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Abstract—We study agents acting in an unknown environment
where the agent’s goal is to find a robust policy. We consider
robust policies as policies that achieve high cumulative rewards
for all possible environments. To this end, we consider agents
minimizing the maximum regret over different environment
parameters, leading to the study of minimax regret. This research
focuses on deriving information-theoretic bounds for minimax
regret in Markov Decision Processes (MDPs) with a finite time
horizon. Building on concepts from supervised learning, such
as minimum excess risk (MER) and minimax excess risk, we
use recent bounds on the Bayesian regret to derive minimax
regret bounds. Specifically, we establish minimax theorems and
use bounds on the Bayesian regret to perform minimax regret
analysis using these minimax theorems. Our contributions include
defining a suitable minimax regret in the context of MDPs, finding
information-theoretic bounds for it, and applying these bounds
in various scenarios.

Index Terms—information theory, reinforcement learning,
minimax theorems.

I. INTRODUCTION

The study of reinforcement learning (RL) in adversarial
environments has received significant attention in recent years
[1]. Traditional RL approaches assume a stochastic environ-
ment where the transition probabilities and rewards are fixed
but unknown. A common goal in traditional RL is to find a
policy that minimizes regret, which is the difference between
the optimal expected cumulative reward that could be achieved
if the environment was known and the expected cumulative
reward achieved by the agent.

In many scenarios, we are interested in finding a robust
policy that performs well for all possible environments. We
consider an agent that wants to find a robust policy when
the environment acts as an adversary, selecting the worst-
case environment parameters. For a given class of Markov
Decision Processes, the goal of the agent is to choose a
(possibly randomized) policy that tries to minimize the regret
for the worst case. This regret is referred to as minimax regret.
While theoretical bounds for the minimax regret in some
settings are established [2], [3], its information-theoretic nature
has remained largely unexplored. This research establishes
information-theoretic bounds for minimax regret.

In supervised learning, a notable concept is the minimum
excess risk (MER) [4], [5]. MER is an algorithm-independent
quantity that measures, for a supervised learning problem,
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the gap between its fundamental limit and the best possible
algorithm that is uncertain about the environment but has
access to the data. MER quantifies the gap between the best
possible loss incurred when the algorithm has knowledge
of the environment parameters and when it only has access
to the data. The work by Xu and Raginsky [6] establishes
information-theoretic bounds for the MER in various settings.

Another studied notion in supervised learning is the min-
imax excess risk, as discussed by [7]. In [7], the authors
employ minimax theorems to identify conditions under which
the minimax duality holds, that is when maxx miny f(x, y)
equals miny maxx f(x, y) for a given risk function f(x, y).
Then, the authors use bounds established by [6] for MER to
bound the minimax excess risk.

The concept of minimax regret has been investigated in
various settings within the literature. Lattimore and Szepesvári
explore this topic in the context of partial monitoring, deriving
information-theoretic bounds in the Bayesian setting and es-
tablishing minimax theorems [8]. Then they use these bounds
on the Bayesian regret to subsequently bound the minimax
regret in finite-action partial monitoring settings. In the context
of Markov Decision Processes (MDPs), Buening et al. [9]
establish a minimax theorem for finite state and action spaces,
assuming that the reward is a known deterministic function
of the state and action. In this paper, we extend their results
and prove a minimax theorem for continuous states and action
spaces given additional conditions such as continuity of regret.
Gouverneur et al. [10] establish bounds for the minimum
Bayesian regret (MBR) in reinforcement learning. Like the
MER, the MBR is an algorithm-independent quantity that
measures the gap between the fundamental limit of an RL
problem and the best possible cumulative reward that an agent
can achieve.

Our research builds on these foundations by focusing on
the RL problem in the context of MDPs with finite time
horizon. Inspired by [6]–[10], we derive minimax theorems
and use the bounds on the minimum Bayesian regret to
establish information-theoretic minimax regret bounds. More
specifically, we make the following contributions. (i) We
define a notion of minimax regret for RL that is suitable for
information-theoretic analysis. (ii) Using duality principles, we
then establish connections between the minimax regret and
the minimum Bayesian regret. (iii) We then derive bounds on
minimax regret, demonstrating their applicability in various



scenarios. (iv) Finally, we derive explicit minimax regret
bounds for various settings, such as multi-armed bandits, linear
bandits, and contextual bandits.

II. NOTATION AND PRELIMINARIES

Sets are denoted by calligraphic letters (e.g., state space
S), various notions of regret by fraktur font (e.g., R) and σ-
algebras are denoted by script letters (e.g., S).

Random variables are denoted by capital letters (e.g., Θ),
and their realizations by lowercase letters (e.g., θ). The expec-
tation of X is denoted by EX [X] (or E[X] if it is clear from
context), and conditional expectation of X given y is given by
Ey[X]. ∆(X ) denotes the set of all probability measures on
X . Entropy H(X), KL-divergence DKL(P || Q), and mutual
information I(X;Y ) are defined in standard terms. Consider
a Polish space X equipped with a metric ρ. For probability
distributions P and Q on X , the Wasserstein distance is
defined as W (P,Q) := infD∈Γ(P,Q)

∫
ρ dD, where Γ(P,Q)

is the set of joint distributions with marginals P and Q.

III. MODEL AND DEFINITIONS

In the context of reinforcement learning, we consider an
agent navigating through an uncertain environment, often
modeled as a Markov Decision Process (MDP) [10] with a
finite time horizon T ∈ N time steps. At each time step
t ∈ {1, . . . , T}, the environment is characterized by a state
St ∈ S and the agent selects an action At ∈ A. The state then
transitions to St+1, and the environment produces an outcome
Yt ∈ Y that the agent associates with a reward Rt.

More formally, we define a class of MDPs M, parameter-
ized by a random variable Θ ∈ O. This class is defined by a
state space S, an action space A, a transition kernel p : S×(S×
A × O) → [0, 1] such that PSt+1|St,At,Θ = p(·, (St, At,Θ)),
and an outcome kernel y : Y × (S × O) → [0, 1] such that
PYt|St,Θ = y(·, (St,Θ)), and an initial state prior distribution
PS1|Θ such that S1 ∼ PS1|Θ. The reward received by the agent
is modeled as a deterministic function of the outcome Yt and
the chosen action At, denoted by r(Yt, At). We can write
the random variable Rt as Rt = r(Yt, At). Thus the class
of MDPs M can be seen as a 6-tuple M := (S,A, p, y, r, T ).

For a fixed θ, we define Mθ as the MDP corresponding
to θ. The value of θ is unknown to the agent, however,
S,A, p, y, r and T are known. Learning involves character-
izing the environment parameter θ. In the Bayesian setting,
the agent is assumed to have access to a known prior PΘ.
However, our primary interest lies in the frequentist setting,
where the environment parameter θ is unknown, and the goal
is to characterize bounds for the worst-case parameter θ. We
leverage Bayesian reinforcement learning bounds to derive
these frequentist bounds.

Let the history up to time t be a sequence of random
variables denoted by Ht ∈ Ht, where Ht = (H1, . . . ,Ht) and
Ht+1 = (St, At, Rt). The agent selects actions based on its
current state and history, formalized through a policy function
π := {πt : S × Ht → A}Tt=1. Further, let P be the set of all
policies.

We define the utility, quantifying the cumulative reward the
agent expects to achieve by following a given policy π for a
given MDP Mθ.

Definition 1 (Utility). The utility of an agent in an MDP
Mθ following a policy π is given by UM(πt, θ) :=

Eθ
[∑T

t=1 r(Yt, π(St, H
t))

]
, where the expectation is taken

over the random variables Yt, St and Ht for t ∈ {1, ..T}
drawn following policy π.

To evaluate the efficiency of a policy, we can compare it
with the optimal utility, which represents the best possible
outcome if the agent has perfect knowledge of the environment
parameter θ.

Definition 2 (Optimal Utility). The optimal utility of an agent
in an MDP Mθ is the maximum utility that can be attained
when the policy function has access to the environment pa-
rameters. This quantity is algorithm-independent and is given
by U∗

M(θ) := sup{fθ,t:S→A}T
t=1

Eθ
[∑T

t=1 r(Yt, fθ,t(St))
]
.

The agent’s performance is assessed by the regret, which is
defined as the difference between the optimal utility and the
utility achieved by the agent.

Definition 3 (Regret). The regret of the agent is the difference
between the optimal utility of an MDP and the utility under
a particular policy π. It is given by RM(π, θ) := U∗

M(θ) −
UM(π, θ).

Our goal is to characterize the optimal worst-case regret,
defined as the minimax regret. It evaluates the policy’s perfor-
mance under the most challenging environment parameter.

Definition 4 (Minimax Regret). The minimax regret, MM, is
the regret obtained by an agent following the optimal policy for
the worst-case environment parameters. The minimax regret is
given by MM := infPΠ∈∆(P) supθ∈O EΠ [RM(Π, θ)] .

In contrast to minimax regret, Bayesian regret considers a
prior distribution over environment parameters, providing an
average-case analysis.

Definition 5 (Bayesian Regret). The Bayesian regret of an
MDP following a policy π, denoted by BRM(π,PΘ) is de-
fined as the average regret with respect to a prior distribution
of PΘ of random variable Θ. The Bayesian Regret is given by
BRM(π,PΘ) := EΘ∼PΘ [RM(π,Θ)].

Proposition 1. Let PΘ be absolutely continuous with respect
to µ with density pΘ. Then, the Bayesian regret can be
expressed as

BRM(π,PΘ)= supE

[
T∑

t=1

r(Yt, ft(St,Θ))

]
− EΘ [UM(π,Θ)]

where the supremum is taken over the function space {ft :
S ×O → A}Tt=1.



Proof. By using the linearity of expectation, we can inter-
change the supremum and the expectation, leading to the
following equalities for the Bayesian regret:

BRM(π,PΘ) = EΘ∼PΘ
[RM(π,Θ)] =

∫
θ

R(π, θ)pΘ(θ)dµ

=

∫
θ

sup
{ft:S×O→A}T

t=1

V (f, θ)pΘ(θ)dµ−
∫
θ

UM(π, θ)pΘ(θ)dµ

= sup
{ft:S×O→A}T

t=1

E

[
T∑

t=1

r(Yt, ft(St,Θ))

]
− EΘ [UM(π,Θ)] .

where V (f, θ):=Eθ
[∑T

t=1 r(Yt, ft(St, θ))
]

and f = {ft}Tt=1.

Further, we define the minimum Bayesian regret as the
lowest achievable average regret under any policy, given the
prior distribution over the environment parameters.

Definition 6 (Minimum Bayesian Regret). Let us consider
π := {πt : S × Ht → A}Tt=1. The minimum Bayesian regret
(MBR) under a prior PΘ is denoted by FM(PΘ) and is given
by FM(PΘ) := infπ BRM(π,PΘ).

Finally, we introduce the worst-case minimum Bayesian
regret, corresponding to the maximum MBR achievable under
any prior. This concept is critical in game-theoretic scenarios,
where the environment selects the most challenging prior, and
the agent optimizes its policy in response.

Definition 7 (Worst-case MBR). The Worst-case MBR is the
maximum MBR that can be achieved by any prior. It can also
be interpreted in a game-theoretic fashion as the Bayesian
regret when the environment plays first, choosing the worst
prior, and the agent plays next, selecting the best possible
policy for that prior. Hence, the worst-case MBR is given by
F∗
M := sup

PΘ∈∆(O)

FM(PΘ).

IV. MINIMAX THEOREMS

In this section, we will state and prove minimax theo-
rems that provide conditions where the worst-case minimum
Bayesian regret and the minimax regret are equal.

A. Minimax theorem with continuity conditions

We will adapt the minimax theorem from Cesa-Bianchi et
al. [11, Theorem 7.1]. To prove the minimax theorem for regret
under these conditions, we need the following to hold:

(i) EΠEΘ [RM(Π,Θ)] is bounded and real valued.
(ii) ∆(P) and ∆(O) are convex sets.

(iii) ∆(O) is in addition, a compact set.
(iv) EΠEΘ [RM(Π, .)] is continuous with respect to PΘ for a

fixed PΠ.
(v) EΠEΘ [RM(Π,Θ)] is convex for fixed PΠ and is concave

for fixed PΘ.

Theorem 1. Let (O, δO) be a compact metric space and
(π, δP) be a metric space of policies. Let ∆(O) and ∆(P)
be the set of all Borel probability measures on (O, δO)
and (π, δP) respectively. Under the conditions RM(π, θ) is

bounded for all π ∈ P and θ ∈ O, and if RM(π, .) is a
continuous function of θ for each π we have, MM = F∗

M.

Proof. The proof follows from Theorem 2 in [7], where
they establish minimax duality conditions for excess risk in
supervised learning. To prove the minimax theorem in our
setting, we verify conditions (i) through (v). Condition (i)
holds by assumption. Condition (ii) is satisfied because the set
of all Borel probability measures on a metric space is known
to form a convex set. For condition (iii), we observe that
∆(O) is compact with respect to the Prokhorov metric δm [12,
Proposition 5.3]. Condition (iv) is verified by demonstrating
sequential continuity, which is equivalent to continuity in a
metric space [13]. Let us define g(θ) for any fixed θ as
g(θ) = RM(π, θ). We know g(θ) is both bounded and
continuous. If PΘn converges to PΘ0 under the Prokhorov
metric δm, then PΘn converges to PΘ0 weakly in measure, as
(O, δO) is a compact and separable metric space [12, Theorem
4.2]. We define h(PΘ) as the expected value of g(Θ) under
the distribution PΘ, i.e., h(PΘ) = EΘ[g(Θ)] =

∫
g(θ) dPΘ.

Furthermore, let us define the sequence {hn}n∈N, where hn =
h(PΘn). Convergence in measure, combined with the fact that
g(θ) is bounded and continuous, implies that

∫
g(θ) dPΘn

converges to
∫
g(θ) dPΘ0

pointwise. Hence, we conclude that
hn converges to h0 [12, Theorem 3.2]). The Dominated Con-
vergence Theorem, along with the boundedness and pointwise
convergence, ensures that limn→∞ EΠ[hn] = EΠ[h0] [14],
confirming the continuity of EΠEΘ[RM(Π, ·)] with respect
to PΘ. Condition (v) is satisfied because the expectation is
linear with respect to the distribution.

Theorem 1 establishes that the minimax duality holds even in
the case of continuous state and action spaces provided some
additional conditions on regret are met. Further, using Theo-
rem 1, we demonstrate that the minimax theorem holds even
in the case of stochastic rewards with finite states and actions
and with a finite class of MDPs. Also, notably, Y and H need
not be finite.

Corollary 1. If RM(π, θ) is bounded for all π ∈ P and
θ ∈ O, and if S , A, and O are finite, then MM = F∗

M.

Proof. Let us equip P and O with the discrete metrics δP
and δO, respectively. Since O is finite, the space (O, δO) is
compact under the discrete metric δO. Additionally, RM(π, ·)
is continuous with respect to θ for a fixed π. This follows
from the fact that, under the discrete metric, any convergent
sequence {θn}n∈N ⊂ O eventually becomes constant, imply-
ing that RM(π, θn) converges. Therefore, all the assumptions
of Theorem 1 are satisfied, and we conclude that MM = F∗

M.

V. UPPER BOUNDS ON MINIMAX REGRET

Under certain conditions, the minimum Bayesian regret can
be bounded above by a quantity dependent on the prior [10].
Specifically, we have the following inequalities: FM(PΘ) =
infπ∈P EΘ [RM(π,Θ)] = infPΠ∈∆(P) EΠEΘ [RM(Π,Θ)] ≤



K1(PΘ), where K1(PΘ) is a quantity determined by the prior
PΘ. Hence, we can bound the worst-case MBR as follows:
F∗
M = supPΘ∈∆(O) infPΠ∈∆(P) EΘEΠ [RM(Π,Θ)] ≤ K2,

where K2 is a quantity independent of the prior. Furthermore,
when the conditions of the minimax theorem are satisfied, the
minimax regret itself can be similarly bounded:

MM = inf
PΠ∈∆(P)

sup
θ∈O

EΠ [RM(Π, θ)]

= inf
PΠ∈∆(P)

sup
PΘ∈∆(O)

EΘEΠ [RM(Π,Θ)]

= sup
PΘ∈∆(O)

inf
PΠ∈∆(P)

EΘEΠ [RM(Π,Θ)] ≤ K2.

This shows that, under minimax duality conditions, we can
apply bounds on MBR to control the minimax regret. The
theorem presented below provides information-theoretic upper
bounds on the minimax regret by using the minimum Bayesian
regret bounds outlined in [10, Section V] under diverse condi-
tions of the reward function and the probability distributions of
states and observations. These bounds are derived using terms
associated with a natural Bayesian reinforcement learning
approach, specifically the Thompson sampling algorithm.

Theorem 2. Consider the function f⋆ that maximizes the
expected utility, defined as

f⋆ = arg supf={ft:S×O→A}T
t=1

E
[∑T

t=1 r(Yt, ft(St,Θ))
]
.

Let S⋆
t and Y ⋆

t denote the states and observations at time t
when the function f⋆ is followed. Additionally, let Ŝt, Ŷt, and
Ĥt represent the states, observations, and history at time t
obtained using the Thompson sampling algorithm [15], [16].
Then, we obtain the following upper bounds for the minimax
regret:

1) If for all t = 1, . . . , T , the random reward obtained by
following f⋆, r(Ŷt, f

⋆
t (Ŝt, θ)) is σ2

t -sub-Gaussian under
PŶt,Ŝt|Ĥt=ĥt

for all θ ∈ O and all ĥt ∈ Ht, then

MM ≤ sup
PΘ

T∑
t=1

E
[√

2σ2
tDKL(PY ⋆

t ,S⋆
t |Θ || PŶt,Ŝt|Ĥt

)
]
.

2) Suppose that (Y ×A) is a metric space with metric ρ. If
the reward function r : Y ×A → R is L-Lipschitz under
the metric ρ, then

MM ≤ sup
PΘ

L

T∑
t=1

E
[
W (PY ⋆

t ,S⋆
t |Θ,PŶt,Ŝt|Ĥt

)
]
.

where W (·, ·) represents the Wasserstein distance.

Thus, we can find Furthermore, the minimax regret for
specific problems can be upper bounded using specialized
bounds as derived in [10], [17], and [18].

A. Finite Multi-arm Bandit Problem with bounded reward

The finite Multi-Armed Bandit (MAB) problem with
bounded rewards is a specific class of MDPs. Let A be
finite. Formally, the finite MAB problem is defined by the
class B = (S,A, p, y, r, T ), where S = {s} and Yt is
independent of St given Θ, for all t. Moreover, let O be a

finite set. Let us introduce a prior distribution PΘ. We can
then apply Corollary 1 as we have a finite set of MDPs with
finite states and action spaces.

The bound derived in [10, Corollary 5] can be used to
establish an upper bound on the minimum Bayesian regret:
FB(PΘ) ≤ supPΘ∈∆(O)

√
1
2 |A|H(A⋆)T ), and hence obtain

the minimax regret bound: MB ≤ O(
√

|A| log |A|T ), which
matches the upper bound obtained in [19] and exceeds the
lower bound only by a

√
log |A| factor [20].

B. Linear Bandits
Consider a linear bandit problem defined by L =

(S,A, p, y, r, T ), where S = {s} and Yt is independent of
S given Θ. The actions are represented as a d-dimensional
vector, i.e., A ⊂ Rd, and the reward from an action a ∈ A
satisfies Eθ[r(Yt, a)] = aT θ. Furthermore, we assume the
conditions from Theorem 1 hold. In addition, consider a ball-
structured action space and the parameter space A,O ⊆
Bd(0, 1), where Bd(0, 1) denotes the d-dimensional closed
Euclidean unit ball. Under these conditions, an algorithm π̂-
specifically the Thompson sampling algorithm can achieve a
regret bound [18] given by: BRL(π̂,PΘ) ≤ O(d

√
T log T ).

This further implies that the MBR can be bounded above, i.e.,
FL(PΘ) ≤ O(d

√
T log T ). Consequently, under the conditions

of the minimax theorem, the minimax regret is bounded by
ML ≤ O(d

√
T log T ), which exceeds the lower bound for

this problem [19] by only a
√
log T factor.

C. Contextual Bandits
Consider a contextual bandit problem defined by C =

(S,A, p, y, r, T ). The transition kernel p is such that the
next state at time t + 1 is independent of both the previous
state and the action taken at time t. We also assume the
conditions from Corollary 1 hold. Assuming the rewards are
bounded in [0, 1], for any contextual bandit problem C, there
exists an algorithm π̂ (specifically, the Thompson sampling
algorithm) such that the Bayesian regret after T rounds is

bounded as follows [17]: BRC(π̂,PΘ) ≤
√

|A|TH(Θ)
2 . This

further implies that the MBR can be bounded above, i.e.,

FC(PΘ) ≤
√

|A|TH(Θ)
2 . Therefore, under the conditions of

the minimax theorem, the minimax regret is bounded by
MC ≤ O

(√
|A|T log |O|

)
, which matches the optimal rate

[21, Section 1.2].

VI. CONCLUSION

This work demonstrates how Bayesian regret bounds can
be applied to establish information-theoretic minimax regret
bounds for RL problems in the form of Markov decision
processes. We extend the minimax theorem to more general
spaces beyond finite state and action spaces, deriving minimax
regret bounds across various problem settings, including ban-
dit, contextual bandit, and reinforcement learning problems.
Our analysis recovers upper bounds for specific problem
classes. Future research directions include exploring additional
conditions for duality and investigating other suitable regret
definitions, including risk functionals.



REFERENCES

[1] J. Moos, K. Hansel, H. Abdulsamad, S. Stark, D. Clever, and J. Peters,
“Robust reinforcement learning: A review of foundations and recent
advances,” Machine Learning and Knowledge Extraction, vol. 4, no. 1,
pp. 276–315, 2022.
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[8] T. Lattimore and C. Szepesvári, “An information-theoretic approach
to minimax regret in partial monitoring,” in Conference on Learning
Theory. PMLR, 2019, pp. 2111–2139.

[9] T. K. Buening, C. Dimitrakakis, H. Eriksson, D. Grover, and E. Jorge,
“Minimax-bayes reinforcement learning,” in International Conference
on Artificial Intelligence and Statistics. PMLR, 2023, pp. 7511–7527.

[10] A. Gouverneur, B. Rodrı́guez-Gálvez, T. J. Oechtering, and
M. Skoglund, “An information-theoretic analysis of Bayesian

reinforcement learning,” in 2022 58th Annual Allerton Conference on
Communication, Control, and Computing (Allerton). IEEE, 2022, pp.
1–7.

[11] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games.
Cambridge university press, 2006.

[12] O. van Gaans, “Probability measures on metric spaces,” Lecture notes,
2003.

[13] V. Orevkov, “Equivalence of two definitions of continuity,” Journal of
Soviet Mathematics, vol. 1, no. 1, pp. 92–99, 1973.

[14] R. M. Gray, Probability, random processes, and ergodic properties.
Springer Science & Business Media, 2009.

[15] D. Russo and B. Van Roy, “An information-theoretic analysis of Thomp-
son sampling,” Journal of Machine Learning Research, vol. 17, no. 68,
pp. 1–30, 2016.

[16] O. Chapelle and L. Li, “An empirical evaluation of Thompson sampling,”
Advances in neural information processing systems, vol. 24, 2011.

[17] A. Gouverneur, B. Rodrı́guez-Gálvez, T. J. Oechtering, and
M. Skoglund, “Thompson sampling regret bounds for contextual bandits
with sub-gaussian rewards,” in 2023 IEEE International Symposium on
Information Theory (ISIT). IEEE, 2023, pp. 1306–1311.

[18] S. Dong and B. Van Roy, “An information-theoretic analysis for Thomp-
son sampling with many actions,” Advances in Neural Information
Processing Systems, vol. 31, 2018.

[19] D. J. Foster, S. M. Kakade, J. Qian, and A. Rakhlin, “The sta-
tistical complexity of interactive decision making,” arXiv preprint
arXiv:2112.13487, 2021.

[20] J.-Y. Audibert and S. Bubeck, “Minimax policies for adversarial and
stochastic bandits,” in COLT, 2009, pp. 217–226.

[21] D. Foster and A. Rakhlin, “Beyond UCB: Optimal and efficient con-
textual bandits with regression oracles,” in International Conference on
Machine Learning. PMLR, 2020, pp. 3199–3210.


	Introduction
	Notation and Preliminaries
	Model and Definitions
	Minimax Theorems
	Minimax theorem with continuity conditions

	Upper bounds on minimax regret
	Finite Multi-arm Bandit Problem with bounded reward
	Linear Bandits
	Contextual Bandits

	Conclusion
	References

