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Abstract

This paper studies the Bayesian regret of a variant of the Thompson-Sampling algorithm for bandit problems. It

builds upon the information-theoretic framework of [1] and, more specifically, on the rate-distortion analysis from [2],

where they proved a bound with regret rate of O(d
√

T log(T )) for the d-dimensional linear bandit setting. We focus

on bandit problems with a metric action space and, using a chaining argument, we establish new bounds that depend

on the metric entropy of the action space for a variant of Thompson-Sampling. Under suitable continuity assumption

of the rewards, our bound offers a tight rate of O(d
√

T ) for d-dimensional linear bandit problems.

1 Introduction

Bandit problems are a class of decision problems in which an agent interacts sequentially with an unknown environ-

ment by choosing actions and earning rewards in return. The goal of the agent is to maximize its expected cumulative

reward, which is the expected sum of rewards that it will earn throughout its interaction with the environment. This

necessitates a delicate balance between the exploration of different actions to gather information for potential future

rewards, and the exploitation of known actions to receive immediate gains. The theoretical study of the performance of

an algorithm in a bandit problem is done by analyzing the expected regret, which is defined as the difference between

the cumulative reward of the algorithm and the hypothetical cumulative reward that an oracle would obtain by choos-

ing the optimal action at each time step. An effective method for achieving small regret is the Thomson Sampling (TS)

algorithm [3], which, despite its simplicity, has shown remarkable performance [4, 5, 6].

Studying the Thomspon Sampling regret, [1] introduced the concept of information ratio, a statistic that captures the

trade-off between the information gained by the algorithm about the environment and the immediate regret. They used

this concept to provide a general upper bound for finite action spaces A that depends on the entropy of the optimal

action H(A⋆), the time horizon T (the total number of times that the agent interacts with the environment), and a

problem-dependent upper bound on the information-ratio Γ, namely
√

Γ · T · H(A⋆). For finite environment param-

eter spaces, under a Lipschitz continuity assumption of the expected reward and using Lipschitz maximal inequality

argument, Dong and Van Roy [2] were able to control the regret of the TS algorithm via a ”compressed statistic” Θε
of the environment paramers Θ, with a bound of the form ε · T +

√

Γ · T · H(Θε). In particular, they derived a near

optimal regret rate of O(d
√
T logT ) for d-dimensional linear bandit problems.

In this paper, building on the work of [2], we explored the use of the chaining technique for bandit problems where

the rewards exhibit some subgaussian continuity property with respect to the action space. We introduced the Two

Steps Thompson Sampling (2-TS), a variant of the original algorithm where the history is updated every time steps.

For this algorithm, we derive a bound that captures the continuity property of the reward process and depends on the

metric entropy of the action space. Notably our bound does not require finite environment or action space and holds

for continuous action spaces. For the class of linear bandit problems, we obtained a bound in O(d
√
T ) matching the
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best possible regret Ω(d
√
T ) from [7].

The rest of the paper is organized as follows. Section 2 presents the bandit problem setup, gives a definition of the

Bayesian expected regret, introduces Two Steps Thompson Sampling algorithm and the specific notations. Section 3

explains the idea of the bounding technique, defines the required tools and assumptions we will be using. Section 4

states and proves our main theorem. Section 5 applies our theorem to the important case of linear bandit problems

and derives several specific bounds before giving an deriving a bound for linear bandit problems with a ball structured

action space. Finally, Section 6 discusses our results and possible extensions and future work.

2 Problem setup

We consider a sequential decision problem, where at each time step (or round) t ∈ {1, . . . , T }, an agent interacts with

an environment by selecting an action At from a action set A and, based on that action, receives a real valued reward

Rt ∈ R. The pair of the selected action and the received reward is collected in a history Ht+1 = Ht ∪Ht+1, where

Ht+1 = {At, Rt}, that will be accessible to the agent in the next round. The procedure repeats until the last round

t = T .

Following the Bayesian framework, we consider the environment to be characterized by some parameters θ ∈ O,

unknown to the agent, that are sampled from a known prior distribution PΘ. This prior, together with the reward

distribution PR|A,Θ,fully describes the bandit problem. As the reward distribution depends on the selected action and

the environment parameters, it may be written asRt = R(At,Θ) for some possibly random functionR : A×O → R.

The goal of the agent is to take a sequence of actions that maximizes the total collected reward. More specifically, the

agent seeks to learn a policy ϕ = {ϕt : Ht → A}Tt=1 that, for each time t ∈ {1, . . . , T }, selects an action At based

on the history Ht such that it maximizes the expected cumulative reward RT (ϕ) := E

[

∑T
t=1 R(ϕt(H

t),Θ)
]

.

2.1 The Bayesian expected regret

The Bayesian expected regret quantifies the difference between the expected cumulative reward achieved by the agent

following a policy ϕ and the optimal expected cumulative reward that could be obtained by an omniscient agent having

access to the true reward function and selecting the action yielding the highest expected reward.

Definition 1 (Optimal cumulative reward) The optimal cumulative reward of a bandit problem is defined as

R⋆T := sup
ψ

E

[ T
∑

t=1

R(ψ(Θ),Θ)

]

,

where the supremum is taken over all decision rules ψ : O → A such that the expectation above is defined.

We denote a policy that achieves the supremum of Definition 1 as ψ⋆ and we refer to the action it selects as the optimal

action A⋆ := ψ⋆(Θ). We make the following technical assumption on the action set to ensure that such a policy

exists.

Assumption 1 (Compact action set) The set of actions A is compact.

The difference between the optimal cumulative reward and the expected cumulative reward of a policy ϕ is called the

Bayesian expected regret of ϕ, denoted REGT (ϕ).

Definition 2 (Bayesian expected regret) The Bayesian expected regret of a policy ϕ in a bandit problem is defined

as

REGT (ϕ) := R⋆T −RT (ϕ).
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2.2 Thompson Sampling algorithm and the Two Steps variant

One of the most popular and most studied algorithm for solving bandit problems is the Thompson Sampling (TS)

algorithm [4, 5, 6, 2]. TS works by sampling a Bayesian estimate of the environment parameters from the posterior

distribution, and taking the optimal action for the sampled estimate. Specifically, at each time step t ∈ {1, . . . , T },

the agent draws a Bayesian estimate Θ̂t based on the past collected historyHt, takes the corresponding optimal action

Ât = ψ⋆(Θ̂t), receives a reward Rt, and updates the history Ht+1 = {Ht, Ât, Rt}.

In this work, we consider a variation of TS, that we refer to as Two Steps Thompson Sampling (2-TS). The key

difference between this algorithm and the TS algorithm is that the history is updated every two time steps1. Intuitively,

the algorithm will behave the same, but will wait to have collected two rewards before updating its history, thus taking

slightly less informed actions half of the time. This difference will be important to implement the chaining technique

later on. The pseudocode for Two Steps Thompson Sampling is given in Algorithm 1.

Algorithm 1 Two Steps Thompson Sampling algorithm

1: Input: environment parameters prior PΘ.

2: for t = 1 to T do

3: Sample a parameter estimation Θ̂t ∼ PΘ|Ht .

4: Take the corresponding optimal action Ât = ψ⋆(Θ̂t).
5: Collect the reward Rt = R(Ât,Θ).
6: if t is even then

7: Update the history Ht+1 = {Ht, Ât, Rt, Ât−1, Rt−1}.

8: else

9: Keep the history Ht+1 = Ht.

10: end if

11: end for

2.3 Notation specific to bandit problems

Since the σ-algebras of the history Ht are often used in the conditioning of the expectations and probabilities coming

up in the analysis, similarly to [1, 2, 8, 9], we define the operators Et[·] := E[·|Ht] and Pt[·] := P[·|Ht], whose

outcomes are σ(Ht)-measurable random variables and H = A× R.

Analogously, we define It(A
⋆;Rt) := Et[DKL(PRt|Ht,A⋆‖PRt|Ht)] as the disintegrated conditional mutual informa-

tion between the optimal action A⋆ and the reward Rt, given the history Ht, see [10, Definition 1.1], which is itself

also a σ(Ht)-measurable random variable.

When it is clear from the context that the random rewards depend on the environment parameters Θ, we will often use

the notation R(At) as a shorthand for R(At,Θ) to simplify the expressions.

3 Chain-link Information Ratio and Chaining Technique

In bandit problems where the rewards of nearby actions exhibit some continuity property, we aim to exploit this de-

pendence using a chaining argument. More specifically, our idea is to approach the Two Step Thompson Sampling

algorithm by a chain of increasingly accurate approximations, which we refer to as “approximate learning”.

Inspired by [2], our construction relies on the existence of a sequence of finer and finer quantizations {A⋆k}∞k=k0 of

the optimal action A⋆ and a corresponding carefully crafted action sampling function fkt : A → A for each round

t ∈ {1, . . . , T }. This quantization and sampling functions are designed to satisfy the following three requirements

simultaneously:

(i) The quantizations A⋆k are less informative than A⋆, that is, H(A⋆k) ≤ H(A⋆) for all k ≥ k0.

1We implicitly assume that, for Two Steps Thompson Sampling, the total number of steps T is an even number.
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(ii) At each round t ∈ {1, . . . , T }, the Two Step Thompson Sampling regret can be written as an infinite sum of the

difference between the approximate learning regrets:

Et

[

R(A⋆)−R(Ât)
]

=

∞
∑

k=k0+1

Et

[(

R(fkt (A
⋆
k))−R(fkt (Ât,k))

)

−
(

R(fk−1
t (A⋆k−1)) −R(fk−1

t (Ât,k−1))
)]

.

(iii) For each time step t ∈ {1, . . . , T }, and for every k > k0, the regret difference between the kth-consecutive

“approximate learning” can be bounded using the information gained about the quantization A⋆k while, at the

same time, it reveals no more information about the quantizationA⋆k than Two Step Thompson Sampling.

3.1 Nets and quantizations

When designing the quantization A⋆k ∈ Ak of the optimal action, we face two conflicting goals: on the one hand, we

want the quantization to be little informative about A⋆ while, on the other hand, we want to ensure that Ak converges

quickly to a good approximation of A. This dual objective naturally leads to considering ε-nets.

Definition 3 (ε-net and covering number) A set N is called an ε-net for (A, ρ) if, for every a ∈ A, there is a

π(a) ∈ N such that ρ(a, π(a)) ≤ ε. The smallest cardinality of an ε-net for (A, ρ) is called the covering number, that

is

N (A, ρ, ε) , inf
{

|N | : N is an ε-net of (A, ρ)
}

.

The covering numberN (A, ρ, ε) can be understood as a measure of the complexity of the action set A at the resolution

ε. Equipped with this new concept, a possible kth-quantization A⋆k is the quantization of the optimal action A⋆ at the

scale 2−k.

Definition 4 (kth-quantization) Let Ak be a 2−k-net for (A, ρ) with an associated mapping πk : A → Ak, such that

the mappings πk are restricted to those of the form πk = π′
k ◦πk+1, where π′

k : Ak+1 → Ak. We defineA⋆k = πk(A
⋆)

as the kth-quantization of the optimal action A⋆ with respect to (A, ρ). Similarly, the quantization Ât,k = πk(Ât) is

the kth-quantization of the sampled action Ât.

Note that A⋆k is completely determined by A⋆k+1 via the mapping π′
k : Ak+1 → Ak. In the following, we set k0 to be

the largest integer such that 2−k0 ≥ diam(A).

3.2 Existence of the “approximate learning”

The sequence of quantizations {A⋆k}∞k=k0 given in Definition 4 satisfy Requirement (i) since there is a deterministic

mapping between A⋆ and A⋆k [11, Theorem 1.4 (f)]. We claim that for each time step t ∈ {1, . . . , T }, and for each

k > k0, there exists a random function fkt : Ak → Ak that satisfies Requirements (ii) and (iii).

Proposition 1 Let {A⋆k}∞k=k0 be defined as in Definition 4. For each time step t ∈ {1, . . . , T }, there exists a sequence

of random functions {fkt }∞k=k0 that for each k > k0, satisfies the following:

(i) Et

[

R(fk0t (A⋆k0))−R(fk0t (Ât,k0))
]

= 0,

(ii) limk→∞ Et

[

R(fkt (A
⋆
k))−R(fkt (Ât,k))

]

= Et

[

R(A⋆)−R(Ât)
]

, and

(iii) It
(

A⋆k;R(f
k
t (Ât,k)), R(f

k−1
t (Ât,k−1)) ≤ It(A

⋆
k;R(Ât), R(Â

′
t)
)

, a.s.

where in (iii) the sampled actions Ât and Â′
t are identically distributed.

Proof 1 The proof follows closely the proof of [2, Proposition 2] and is given in Appendix B.1.
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3.3 Subgaussian process, smooth rewards and chain-link information ratio

The motivation for using a chaining technique is our aim to derive a regret bound that could capture effectively the

dependence between the rewards of nearby actions. We conceptualize this dependence considering that the rewards

are subgaussian with respect to the actions.

Definition 5 (Subgaussian process) A stochastic process {Ra}a∈A on the metric space (A, ρ) is called subgaussian

if for all a, b ∈ A and all λ > 0

logE

[

eλ(Ra−Rb)

]

≤ λ2ρ(a, b)2

2
.

Technically, for a process {Ra}a∈ cA to be subgaussian it is also required that E[Ra] = 0 for all a ∈ A, see, for

example [12, Definition 5.20]. However, we do not require this restriction moving forward. One way to interpret the

subgaussian process property is to understand it as an ”in probability continuity” requirement. Actually, Definition 5,

up to constant terms, can be equivalently written as

P[|Ra −Rb| ≥ t] ≤ 2e−Ct
2ρ(a,b)2

for all t ≥ 0 and all all a, b ∈ A, and for some C > 0.

Lastly, to ensure that the difference of regret between consecutive approximate learning vanishes asymptotically, we

can impose the following mild technical assumption.

Definition 6 (Separable process) A stochastic process {Ra}a∈A is called separable if there is a countable set A′ ⊆ A
such that, for all a ∈ A

Ra ∈ lim
a′→a
a′∈A′

Ra′ a.s.

We refer to rewards satisfying both definition 5 and 6 as smooth rewards on the metric space (A, ρ).
Definition 7 (Smooth rewards) We say that the rewards are smooth on the metric space (A, ρ), if for all environment

parameters θ ∈ O, the random rewards {R(a, θ)}a∈A form a separable subgaussian process on (A, ρ).
To control the difference of regret between successive approximate learning, it is useful to introduce the concept of

chain-link information ratio. It is a direct adaptation of our chaining technique to the information ratio introduced

by [1] and later used by [2].

Definition 8 (Chain-link information ratio) For each time step t ∈ {1, . . . , T }, and for each k > k0, we define the

chain-link information ratio as

Γt,k :=
Et

[(

R(fkt (A
⋆
k))−R(fkt (Ât,k))

)

−
(

R(fk−1
t (A⋆k−1))−R(fk−1

t (Ât,k−1))
)]2

It(fkt (A
⋆
k), f

k−1
t (A⋆k−1);R(f

k
t (Ât,k)), R(f

k−1
t (Ât,k−1)))

whereA⋆k, A
⋆
k−1 and Ât,k, Ât,k are the kth and (k−1)th quantizations ofA⋆ and Ât respectively and where the random

functions fkt and fk−1
t satisfy the conditions of Proposition 1,

There is no particular interpretation of the chain-link information ratio. The purpose of its introduction is to unify

elegantly specific results via problem-dependent upper bounds on Γt,k similarly to what is done in prior works for the

information ratio [1, 2] and the lifted information ratio [8, 9].

4 Main result

In this section, we leverage the previously introduced concepts to derive a general chained bound on the Two Steps

Thompson Sampling regret for bandit problems with smooth rewards. We obtain a bound that depends on the com-

plexity of the action space. Remarkably, through the use of Lemma 1, our result hold for continuous action spaces.
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We note that 1 could be applied to [2] as a generalization of their [2, Lemma 1], thus extending their results to infinite

and continuous environment spaces.

Theorem 1 (Chained bound) For bandit problems with smooth rewards on the metric space (A, ρ), the 2-TS ex-

pected cumulative regret after T steps is bounded as

REG2-TS
T ≤

∞
∑

k=k0+1

√

2 · Γ̄k · T · H(A⋆k),

where A⋆k is the kth-quantization about the optimal action A⋆ with respect to (A, ρ) and where for each k > k0, and

Γ̄k is a upper bound on E[Γt,k].

Proof 2 We show that

REG2-TS
T =

T
∑

t=1

E[R(A⋆)−R(Ât)]

(a)
= 2

∑

1≤t≤T,t odd

E[R(A⋆)−R(Ât)]

= 2
∑

1≤t≤T,t odd

E

[

Et[R(A
⋆)−R(Ât)]

]

(b)
= 2

∑

1≤t≤T,t odd

E

[

∞
∑

k=k0+1

Et

[(

R(fkt (A
⋆
k))−R(fkt (Ât,k))

)

−
(

R(fk−1
t (A⋆k−1))−R(fk−1

t (Ât,k−1))
)]]

(c)

≤ 2
∑

1≤t≤T,t odd

∞
∑

k=k0+1

E

[

√

Γt,k · It(A⋆k, A
⋆
k−1;R(f

k
t (Ât,k)), R(f

k−1
t (Ât,k−1)))

]

(d)

≤ 2
∑

1≤t≤T,t odd

∞
∑

k=k0+1

√

E[Γt,k] · I(A⋆k;R(Ât), R(Ât+1)|Ht)

(e)

≤ 2
∞
∑

k=k0+1

√

T

2
· Γ̄k ·

∑

1≤t≤T,t odd

I(A⋆k;R(Ât), R(Ât+1))|Ht)

(f)

≤
∞
∑

k=k0+1

√

2 · Γ̄k · T ·
∑

1≤t≤T,t odd

I(A⋆k; Ât, R(Ât), Ât+1, R(Ât+1))|Ht)

(g)
=

∞
∑

k=k0+1

√

2 · Γ̄k · T · I(A⋆k;H
T )

(h)

≤
∞
∑

k=k0+1

√

2 · Γ̄k · T · H(A⋆k)

where (a) follows since the history of the of 2-TS is being updated every 2 time steps; (b) follows from the definition

of the approximate learning; (c) follows from the definition of Γt,k and the data-processing inequality; (d) follows

from consecutively using the fact that A⋆k−1 is completely determined by A⋆k, then using Proposition 1 (iii), and

finally applying Jensen’s inequality ; (e) follows from the definition of Γ̄k and the application of the Cauchy-Schwartz

inequality; (f) results from the ”more data, more information” property [11, Proposition 2.3.5]; (g) follows from the

chain rule for mutual information; and (h) comes from [11, Proposition 2.4.4] and the fact that Ak is a finite set.

In the next section, we present application of Theorem 1 to derive explicit regret bounds for particular settings of

bandit problems with structure and show that our bound offers a tight regret rate for the linear bandit problem.
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5 Applications to linear bandit problems

In linear bandits problems, each action is parameterized by a feature vector and the associated expected reward can

be written as the inner product between the feature vector and the environment parameter. Mathematically, a d-

dimensional linear bandit problem is a bandit problem with A,O ⊂ Rd and such that for all a ∈ A and all θ ∈ O we

have

E[R(a, θ)] = 〈a, θ〉,

where the expectation is taken over the randomness of the reward function.

Using a similar analysis as Russo and Van Roy [1], we can bound the chain-link information ratio in linear bandits via

the dimension of the action space. The proof is given in Appendix B.2.

Proposition 2 For d-dimensional linear bandit problems with smooth rewards on the metric space (A, ρ), for each

t ∈ {1, . . . , T }, and each k > k0, we have that

Γt,k ≤ 2 · (6 · 2−k)2 · d,

where Γt,k is the kth-chain-link information ratio.

Combining Proposition 2 and Theorem 1 leads to the following bound on the 2-TS regret for linear bandit problems

with smooth rewards.

Theorem 2 (Smooth linear bandit) For d-dimensional linear bandit problems with smooth rewards on the metric

space (A, ρ), the 2-TS expected cumulative regret after T steps is bounded by

REG2-TS
T ≤ 12

∞
∑

k=k0+1

2−k
√

d · T · H(A⋆k),

where A⋆k is the kth quantization of the optimal action A⋆ with respect to the metric space (A, ρ), as defined in

Definition 4.

From Theorem 2, we can derive a bound that depends on the entropy integral. The proof follows the steps from [12,

Corollary 5.25] and is given in Appendix B.3.

Corollary 1 (Entropy integral) For a linear bandit of dimension d, with smooth rewards on the metric space (A, ρ),
the 2-TS expected cumulative regret after T steps is bounded as

REG2-TS
T ≤ 24

√
d · T

∫ ∞

0

√

log(|N (A, ρ, ε)|)dε,

where N (A, ρ, ε) is the ε-net of smallest cardinality for (A, ρ).
For linear bandit problems where the possible actions lie in the unit ball, with the help of a covering argument, we

come to the following result. The proof is given in Appendix B.4.

Proposition 3 For d-dimensional linear bandits with smooth rewards with respect to (A, ||.||2) and a ball-structured

action space A ⊆ Bd(0, 1), where Bd(0, 1) is the d-dimensional closed Euclidean unit ball, the 2-TS expected

cumulative regret is bounded as

REG2-TS ≤ 7 · d
√
T .

The remarkable property of the above bound is that it is the first information-theoretic bound on the regret of an

algorithm for linear bandits problem that only depends on the dimension d and the square root of the total number

of steps T . It improves on the bound O(d
√

T log(T )) from Dong and Van Roy [2, Theorem 2] and matches the

the minimax lower bound Ω(d
√
T ) proven by Dani et al. [7, Theorem 3] thus suggesting that Two Steps Thompson

Sampling is optimal in this context.
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6 Conclusion

In this paper, we studied bandit problems with rewards that exhibit some continuity property with respect to the

action space. We have introduced a variation of the Thompson Sampling algorithm, which we named the Two Step

Thompson Sampling. The sole difference between this algorithm and the original Thompson Sampling algorithm is

that the history is updated every two time steps. In Theorem 1, we have demonstrated using a chaining argument that

the Two Steps Thompson Sampling cumulative expected regret is bounded from above by a measure of the complexity

of the action space. For d-dimensional linear bandit problems where the rewards form a subgaussian process with

respect to the action space, we obtain a tight regret rate O(d
√
T ) that improves upon the best information-theoretic

bounds and matches with the minimax lower bound Ω(d
√
T ) [7]. Our results raise the question whether it is possible

to obtain such bounds for the original Thompson Sampling algorithm regret, either via adapting our proof techniques

or by relating it to the Two Steps Thompson Sampling regret. One could imagine analyzing separately the regrets of

the odd time steps than those of the even time steps and try to apply techniques as in our paper. Future work also

include extending our results to generalized linear bandits and logistic bandit problems.
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A Additional Lemmata

Lemma 1 Consider a space A, two functions f : A → R+ and g : A → R+, and a probability distribution Q on A.

Then, there exists a pair (a1, a2) ∈ A2 and a q ∈ [0, 1] such that

qf(a1) + (1− q)f(a2) ≤
∫

a∈A

f(a)dQ(a) and qg(a1) + (1− q)g(a2) ≤
∫

a∈A

g(a)dQ(a).

Proof 3 The proof is inspired by to the one from Dong and Van Roy [2, Lemma 2]. Although, it contains key modifi-

cations that allow this version of the lemma to work for general spaces A that are not necessarily finite.

Let F̄ =
∫

a∈A f(a)dQ(a) and Ḡ =
∫

a∈A g(a)dQ(a). Now, consider the spaces Af := {a ∈ A : f(a) ≤ F̄} and

Ag := {a ∈ A : g(a) ≤ Ḡ}. If Af ∩ Ag 6= ∅, then taking both a1 and a2 from Af ∩ Ag trivially satisfies the

conditions for all q ∈ [0, 1]. Therefore, let us assume that the sets are disjoint for the rest of the proof.

Consider some a1 ∈ Af = Ac
g and some a2 ∈ Ag = Ac

f . The required condition from the lemma can be re-written as

q ≥ f(a2)− F̄

f(a2)− f(a1)
and q ≤ Ḡ− g(a2)

g(a1)− g(a2)
,

where the first inequality took into account that f(a1) < f(a2) by the definition of the sets Af and Ag = Ac
f . This

inequality can, in turn, be written as

f(a2)− F̄

f(a2)− f(a1)
≤ Ḡ− g(a2)

g(a1)− g(a2)

which is equivalent to

f(a2)g(a1)− F̄
(

g(a1)− g(a2)
)

≤ Ḡ
(

f(a2)− f(a1)
)

+ f(a1)g(a2).

At this point, we have all the ingredients to proof the statement by contradiction. Assume that there is no pair (a1, a2) ∈
Af ×Ag such that the condition holds, then it must be that

f(a2)g(a1)− F̄
(

g(a1)− g(a2)
)

> Ḡ
(

f(a2)− f(a1)
)

+ f(a1)g(a2)

for every pair (a1, a2) ∈ Af ×Ag. Therefore, we can integrate over all such pairs and the inequality should still hold,

namely

∫

Af

∫

Ag

[

f(a2)g(a1)− F̄
(

g(a1)− g(a2)
)

]

dQ(a1)dQ(a2)

>

∫

Af

∫

Ag

[

Ḡ
(

f(a2)− f(a1)
)

+ f(a1)g(a2)

]

dQ(a1)dQ(a2). (1)

To show that (1) cannot happen, we need to introduce some notation. Let F− :=
∫

Af
f(a)dQ(a) and F+ :=

∫

Ag
f(a)dQ(a) and note that F+ + F− = F̄ . Similarly, G− :=

∫

Ag
g(a)dQ(a) and F+ :=

∫

Af
g(a)dQ(a) and

G+ +G− = Ḡ. Using this notation, we can use Fubini’s theorem in (1) and re-write it as

F+G+ − (F+ + F−)(G+ −G−) > (G+ +G−)(F+ − F−) + F−G−,

which can be simplified to

F−G− > F+G+

and which is impossible by the definition of F−, F+, G+ and G−, completing the contradiction and therefore the

proof.

Lemma 2 ([12, Lemma 5.13]) Let Bd(0, 1) denote the d-dimensional closed Euclidean unit ball. We have |N (Bd(0, 1), ||·
||2, ε) = 1 for ε ≥ 1 and

(

1

ε

)d

≤ |N (Bd(0, 1), || · ||2, ε)| ≤
(

1 +
2

ε

)d

for 0 < ε < 1.
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B Proofs

B.1 Proof of Proposition 1

For each time step t ∈ {1, . . . , T }, we will construct the sequence of function {fkt }∞k=k0 by induction and instead of

constructing a sequence that satisfies directly (iii), we will design it such that for each k > k0, it satisfies simultane-

ously the two following equations:

It
(

A⋆k;R(f
k
t (Ât,k)), R(f

k−1
t (Ât,k−1))

)

≤ It
(

A⋆k;R(Ât), R(f
k−1
t (Ât,k−1))

)

and (2)

It
(

A⋆k+1;R(Ât), R(f
k
t (Ât,k))

)

≤ It
(

A⋆k+1;R(Ât), R(Â
′
t)
)

, (3)

thus ensuring that fkt satisfies (iii).

First, we start by showing that there exists a function fk0t that satisfies requirement (i) and equation (3). By definition

of k0, we have that the cardinality of Ak0 is 1, that is Ak0 = {a0} for some a0 ∈ A and, as A⋆k0 ∈ Ak0 and

Ât,k0 ∈ Ak0 , we have A⋆k0 = Ât,k0 = a0, thus satisfying requirement (i). Setting the random function fk0t to have the

same conditional probability distribution as PA⋆|Ht ensures equation (3) is satisfied.

Now, we assume that for each k ∈ {k0, . . . ,K − 1}, we have constructed a function fkt that satisfied (2) and (3). We

then want to show that we can construct a random function fKt that also satisfies (2) and (3).

First, for each aK,i ∈ AK with i ∈ {1, . . . , |AK |}, we define AK,i = {a ∈ A : πK(a) = aK,i} as the set of actions

in A that are mapped to aK,i by the mapping πK associated to AK , that is formally. In this way, for each aK,i ∈ AK ,

we can write

It
(

A⋆K ;R(Ât), R(f
K−1
t (Ât,K))|Ât ∈ AK,i

)

=
∑

a∈AK,i

Pt[Ât = a|Ât ∈ AK,i]It
(

A⋆K ;R(a), R(fK−1
t (Ât,K))|Ât ∈ AK,i

)

=
∑

a∈AK,i

Pt[Ât = a|Ât ∈ AK,i]It
(

A⋆K ;R(a), R(fK−1
t (Ât,K))

)

and

It
(

A⋆K+1;R(Ât), R(Â
′
t)|Ât ∈ AK,i

)

=
∑

a∈AK,i

Pt[Ât = a|Ât ∈ AK,i]It
(

A⋆K+1;R(a), R(Â
′
t)|Ât ∈ AK,i

)

=
∑

a∈AK,i

Pt[Ât = a|Ât ∈ AK,i]It
(

A⋆K+1;R(a), R(Â
′
t)
)

,

where we used the fact that A⋆K and A⋆K+1 are independent of Ât when conditioned on Ht.

Applying Lemma 1, for each step t ∈ {1, . . . , T } and each aK,i ∈ AK , there exist two actions a
t,1
K,i, a

t,2
K,i ∈ AK,i and

a value ptK,i ∈ [0, 1], such that:

It
(

A⋆K ;R(Ât), R(f
K−1
t (Ât,K))|Ât ∈ AK,i

)

≥ ptK,iIt(A
⋆
K ;R(at,1K,i), R(f

K−1
t (Ât,K))

)

+ (1 − ptK,i)It(A
⋆
K ;R(at,2K,i), R(f

K−1
t (Ât,K))

)

and

It
(

A⋆K+1;R(Ât), R(Â
′
t)|Ât ∈ AK,i

)

≥ ptK,iIt(A
⋆
K ;R(at,1K,i), R(Â

′
t)
)

+ (1− ptK,i)It(A
⋆
K ;R(at,2K,i), R(Â

′
t)
)

.
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For a ∈ AK,i, we define the random function fKt (a) such that it outputs a
t,1
K,i ∈ AK,i with probability ptK,i and

a
t,2
K,i ∈ AK,i with probability 1 − ptK,i. We observe that for a ∈ AK,i, πK(a) = πk(f

K
t (a)) = aK,i as both a and

fKt (a) belong to AK,i. Then, the distance ρ(a, fkt (a)) is bounded by 2−K . We repeat this procedure for all aK,i ∈ AK

and their corresponding AK,i to define fKt (a) for all a ∈ A and it holds by that, for all a ∈ A, ρ(fKt (a), a) ≤ 2−K .

We can verify that

It
(

A⋆K ;R(fKt (Ât,K)), R(fK−1
t (Ât,K−1))

)

=
∑

aK,i∈AK

∑

j=1,2

Pt[f
K
t (Ât,K)) = a

t,j
K,i|Ât ∈ AK,i] · Pt[Ât ∈ AK,i] · It

(

A⋆K ;R(at,jK,i), R(f
K−1
t (Ât,K−1))

)

=
∑

aK,i∈AK

Pt[Ât ∈ AK,i](p
t
K,i · It

(

A⋆K ;R(at,1K,i), R(f
K−1
t (Ât,K−1))

)

+ (1− ptK,i) · It
(

A⋆K ;R(at,2K,i), R(f
K−1
t (Ât,K−1))

)

≤
∑

aK,i∈AK

Pt[Ât ∈ AK,i]It
(

A⋆K ;R(Ât), R(f
K−1
t (Ât,K−1))|Ât ∈ AK,i

)

= It
(

A⋆K ;R(Ât), R(f
K−1
t (Ât,K−1))

)

and similarly that

It
(

A⋆K+1;R(f
K
t (Ât,K)), R(Â′

t)
)

=
∑

aK,i∈AK

∑

j=1,2

Pt[f
K
t (Ât,K)) = a

t,j
K,i|Ât ∈ AK,i] · Pt[Ât ∈ AK,i] · It

(

A⋆K+1;R(a
t,j
K,i), R(Â

′
t)
)

=
∑

aK,i∈AK

Pt[Ât ∈ AK,i](p
t
K,i · It

(

A⋆K+1R(a
t,1
K,i), R(Â

′
t)
)

+ (1− ptK,i) · It
(

A⋆K+1;R(a
t,2
K,i), R(Â

′
t)
)

≤
∑

aK,i∈AK

Pt[Ât ∈ AK,i]It
(

A⋆K+1;R(Ât), R(Â
′
t)|Ât ∈ AK,i

)

= It
(

A⋆K+1;R(Ât), R(Â
′
t)
)

where the inequalities follow from the construction of fKt . Thus fKt satisfies requirement (iii). As the result holds

already for k = k0, by induction, we extend this result for all k ≥ k0.

We note that by construction, for each step t ∈ {1, . . . , T } and for each k ≥ k0, we have that

ρ(fkt (A
⋆
k), A

⋆) ≤ ρ(fkt (A
⋆
k), A

⋆
k) + ρ(A⋆k, A

⋆) ≤ 2 · 2−k, (4)

ρ(fkt (Ât,k), Ât) ≤ ρ(fkt (Ât,k), Ât,k) + ρ(Ât,k, Ât) ≤ 2 · 2−k, (5)

where we use the triangle inequality together with the definition of fkt and of A⋆k and Ât,k.

Lastly, we have to verify that at each period t ∈ {1, . . . , T }, the regret of the “approximate learning” asymptotically

converges to the regret of Two Steps Thompson Sampling regret for finer approximations.

Using the fact that by construction of fkt , we have for all a ∈ Ak that πk(f
k
t (a)) = a and that by definition A⋆k =

πk(A
⋆), we can write:

Et[R(f
k
t (A

⋆
k))−R(A⋆)] = Et[R(f

k
t (A

⋆
k))−R(A⋆k)] + Et[R(A

⋆
k)−R(A⋆)]

= Et[R(f
k
t (A

⋆
k))−R(πk(f

k
t (A

⋆
k)))] + Et[R(πk(A

⋆))−R(A⋆)]

≤ 2 · Et[sup
a∈A

R(πk(a)) −R(a)].

Since the process is separable, by using the same argument as in the proof of [12, Theorem 5.24], we have that

lim
k→∞

Et[sup
a∈A

R(πk(a))−R(a)] = 0,
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and therefore

lim
k→∞

Et[R(f
k
t (A

⋆
k))] = Et[R(A

⋆)].

A similar analysis can be applied to Et[R(f
k
t (Ât,k))−R(Ât)] and leads to

lim
k→∞

Et[R(f
k
t (A

⋆
k))−R(fkt (Ât,k))] = Et[R(A

⋆)−R(Ât)].

B.2 Proof of Proposition 2

We start the proof by recalling the definition of Γt,k as

Γt,k =
Et

[(

R(fkt (A
⋆
k))−R(fkt (Ât,k))

)

−
(

R(fk−1
t (A⋆k−1))−R(fk−1

t (Ât,k−1))
)]2

It(fkt (A
⋆
k), f

k−1
t (A⋆k−1);R(f

k
t (Ât,k)), R(f

k−1
t (Ât,k−1)))

where A⋆k and Ât,k are the kth-quantizations respectively of the optimal action A⋆ and the sampled action Ât. We

recall from the proof of Proposition 1 that the definition of fkt (A) implies that for all ak,m ∈ Ak there exist a pair of

actions a
t,1
k,m, a

t,2
k,m ∈ Ak,m such that

Pt[f
k
t (A) = a

t,1
k,m|A ∈ Ak,m] = ptk,m, Pt[f

k
t (A) = a

t,2
k,m|A ∈ Ak,m] = 1− ptk,m.

For the sake of brevity, we define the notation

Qt[ak−1,m, ak,l, i, i
′] :=Pt[f

k−1
t (A⋆k−1) = a

t,i
k−1,m|A⋆k−1 ∈ Ak,m]

· Pt[fkt (A⋆k) = a
t,i′

k,l |A⋆k ∈ Ak,l]

· Pt[A⋆k ∈ Ak,l, A
⋆
k−1 ∈ Ak−1,m]

and use the notation {(ak−1,δn , ak,γn , iµn
, i′νn)}

Nk

n=1 to represent the sequence of all quadruplets {ak−1, ak, i, i
′} such

that ak−1 ∈ Ak−1, ak ∈ Ak, i ∈ {1, 2}, i′ ∈ {1, 2} and πk−1(ak) = ak−1, where Nk is the number of such quadru-

plets.

We will first focus on

Et

[

(

R(fkt (A
⋆
k))−R(fk−1

t (A⋆k−1))
)

−
(

R(fkt (Ât,k))−R(fk−1
t (Ât,k−1))

)

]

and note that we can relate it to the trace of a random matrix. Indeed, using the previously introduced notations, we

can write this expectation as

Nk
∑

n=1

Qt[ak−1,δn , ak,γn , iµn
, i′νn ]

·
(

Et[R(a
t,iµn

k,γn
)−R(a

t,i′νn
k−1,δn

)|fkt (A⋆k) = a
t,iµn

k,γn
, fk−1
t (A⋆k−1) = a

t,i′νn
k−1,δn

]− Et[R(a
t,iµn

k,γn
)−R(a

t,i′νn
k−1,δn

)]
)

.

Therefore, for any round t ∈ {1, . . . , T }, conditioned on the history Ĥt, we can define a random matrix Mk,t ∈
RNk×Nk by specifying the entry Mk,t

p,q to be equal to

√

Qt[ak−1,δp , ak,γp , iµp
, i′νp ]

√

Qt[ak−1,δq , ak,γq , iµq
, i′νq ]

(

Et[R(a
t,iµq

k,γq
)−R(a

t,i′νq
k−1,δq

)|fkt (A⋆k) = a
t,iµp

k,γp
, fk−1
t (A⋆k−1) = a

t,i′νp
k−1,δp

]− Et[R(a
t,iµq

k,γq
)−R(a

t,i′νq
k−1,δq

)]
)
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for all p, q = 1, . . . , Nk. In this way, the trace of the matrix Mk,t is equal to the desired expectation, namely

Tr(Mk,t) = Et

[

(R(fkt (A
⋆
k))−R(fk−1

t (A⋆k−1))) − (R(fkt (Ât,k))−R(fk−1
t (Ât,k−1)))

]

.

Here, we can note thatR(fkt (A
⋆
k))−R(fk−1

t (A⋆k−1)) is (6 · 2−k)2-sub-Gaussian. Indeed, by construction, of fkt (A
⋆
k)

and fk−1
t (A⋆k−1), we had showed in (4) that ρ(fkt (A

⋆
k), A

⋆) ≤ 2 · 2−k and ρ(fk−1
t (A⋆k−1), A

⋆) ≤ 2 · 2−(k−1). Then,

by using the triangle inequality, we have that

ρ(fkt (A
⋆
k), f

k−1
t (A⋆k−1)) ≤ ρ(fkt (A

⋆
k), A

⋆) + ρ(A⋆, fk−1
t (A⋆k−1)) ≤ 2 · 2−k + 2 · 2−(k−1) = 6 · 2−k.

Similarly, we can show that R(fkt (Ât,k))−R(fk−1
t (Ât,k−1)) is also (6 · 2−k)2-sub-Gaussian.

In the same fashion as in [1, Proposition 5], we relate the mutual information

It(f
k
t (A

⋆
k), f

k−1
t (A⋆k−1);R(f

k
t (Ât,k)), R(f

k−1
t (Ât,k−1)))

to the squared Frobenius norm of Mk,t as:

It(f
k
t (A

⋆
k), f

k−1
t (A⋆k−1);R(f

k
t (Ât,k)), R(f

k−1
t (Ât,k−1)))

≥ It(f
k
t (A

⋆
k), f

k−1
t (A⋆k−1);R(f

k
t (Ât,k))−R(fk−1

t (Ât,k−1)))

=
Nk

∑

p=1

Nk

∑

q=1

Qt[ak−1,δp , ak,γp , iµp
, i′νp ]Qt[ak−1,δq , ak,γq , iµq

, i′νq ]

· DKL(P
R(a

t,iµq

k,γq
)−R(a

t,i′νq

k−1,δq
)|Ĥt,fk

t (A⋆
k
)=a

t,iµp

k,γp
,fk−1

t (A⋆
k−1

)=a
t,i′νp

k−1,δp

||P
R(a

t,iµq

k,γq
)−R(a

t,i′νq

k−1,δq
)|Ĥt

)

≥
Nk

∑

p=1

Nk

∑

q=1

Qt[ak−1,δp , ak,γp , iµp
, i′νp ]Qt[ak−1,δq , ak,γq , iµq

, i′νq ] ·
1

2 · (6 · 2−k)2

·
(

Et[R(a
t,iµq

k,γq
)−R(a

t,i′νq
k−1,δq

)|fkt (A⋆k) = a
t,iµp

k,γp
, fk−1
t (A⋆k−1) = a

t,i′νp
k−1,δp

]− Et[R(a
t,iµq

k,γq
)− R(a

t,i′νq
k−1,δq

)]
)2

=
1

2(6 · 2−k)2 ||M
k,t||2F

where the last inequality is obtained again using the Donsker–Varadhan inequality [13, Theorem 5.2.1] as in [1, Lemma

3].

Combining the last two equations and using the inequality trace(M) ≤
√

rank(M)||M ||F [1, Fact 10], it comes

that

Γt,k ≤ 2(6 · 2−k)2 Trace(Mk,t)2

||Mk,t||2F
≤ 2(6 · 2−k)2 · rank(Mk,t) a.s..

We conclude the proof by showing that the rank of the matrix Mk,t is upper bounded by d.

For the sake of brevity, we define Θt := Et[Θ] and for n = 1, . . . , Nk, we define Qn,t = Qt[ak−1,δn , ak,γn , iµn
, i′νn ]

and Θn,t = Et[Θ|fkt (A⋆k) = a
t,iµn

k,γn
, fk−1
t (A⋆k−1) = a

t,i′νn
k−1,δn

].

We then have

Et

[

R(a
t,iµq

k,γq
)−R(a

t,i′νq
k−1,δq

)

]

= Et

[

〈at,iµq

k,γq
,Θ〉 − 〈at,i

′

νq

k−1,δq
,Θ〉

]

= 〈at,iµq

k,γq
− a

t,i′νq
k−1,δq

,Θt〉
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and

Et

[

R(a
t,iµq

k,γq
)−R(a

t,i′νq
k−1,δq

)|fkt (A⋆k) = a
t,iµp

k,γp
, fk−1
t (A⋆k−1) = a

t,i′νp
k−1,δp

]

= Et

[

〈at,iµq

k,γq
,Θ〉 − 〈at,i

′

νq

k−1,δq
,Θ〉|fkt (A⋆k) = a

t,iµp

k,γp
, fk−1
t (A⋆k−1) = a

t,i′νp
k−1,δp

]

= 〈at,iµq

k,γq
− a

t,i′νq
k−1,δq

,Θp,t〉

Since the inner product is linear, we can rewrite each entry Mk,t
p,q of the matrix Mk,t as

√

Qp,tQq,t〈a
t,iµq

k,γq
− a

t,i′νq
k−1,δq

,Θp,t −Θt〉.

Equivalently, the matrix Mk,t can be written as







√

Q1,t(Θ1,t −Θt)
...

√

QNk,t(ΘNk,t −Θt)







[

√

Q1,t

(

a
t,iµ1

k,γ1
− a

t,i′ν1
k−1,δ1

)

· · ·
√

QNk,t

(

a
t,iµNk

k,γNk
− a

t,i′νNk

k−1,δNk

)

]

.

This rewriting highlights that Mk,t can be written as the product of a Nk by d matrix and a d by Nk matrix and

therefore has a rank lower or equal than min(d,Nk).

For completeness, we can write that the chain-link information ratio is upper bounded by Γt,k ≤ 2 · ρ2k · d where ρk is

an upper bound on ρ(fkt (A
⋆
k), f

k−1
t (A⋆k−1)). This remark will be of use in the proof of Proposition 3.

B.3 Proof of Corollary 1

Bounding the entropy of A⋆k by the cardinality of set Ak, we have that

∞
∑

k=k0+1

2−k
√

H(A⋆k) ≤
∞
∑

k=k0+1

2−k
√

log(|N (A, ρ, 2−k)|).

By definition of the ε-net, |N (A, ρ, ε)| is decreasing in ε. It then comes that

∞
∑

k=k0+1

2−k
√

log(|N (A, ρ, 2−k)|) = 2

∞
∑

k=k0+1

∫ 2−k−1

2−k

√

log(|N (A, ρ, 2−k)|) dε

≤ 2

∞
∑

k=k0+1

∫ 2−k−1

2−k

√

log(|N (A, ρ, ε)|) dε

= 2

∫ diam(A)

0

√

log(|N (A, ρ, ε)|) dε.

= 2

∫ ∞

0

√

log(|N (A, ρ, ε)|) dε,

where the last equality comes from the fact that N (A, ρ, ε) is a singleton for every ε > diam(A).

Using this fact together with Theorem 1 yields the desired result.

B.4 Proof of Proposition 3

In the end of proof of Proposition 2, we have showed that the chain-link information ratio was in general bounded

by Γt,k ≤ 2 · ρ2k · d where ρk is an upper bound on ρ(fkt (A
⋆
k), f

k−1
t (A⋆k−1)) and proved that by definition of the

quantizations A⋆k and the sampling functions fkt , it holds that

ρ(fkt (A
⋆
k), f

k−1
t (A⋆k−1)) ≤ 2 · 2−k + 2 · 2−(k−1).
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We can reflect that the choice of using 2−k-nets to define our sequence of quantizations {A⋆k}∞k=k0+1 was arbitrary. In

general, we could have considered a α−k-net for some α > 1. Adapting the bound on ρk and to that reflection, leads

to the following bound:

ρ(fkt (A
⋆
k), f

k−1
t (A⋆k−1)) ≤ 2 · α−k + 2 · α−(k−1).

Combining this result with Theorem 1, we get that

REG2-TS
T ≤ 2

∞
∑

k=k0+1

√

2 · ρ2k · d · T · log(|N (A, ρ, α−k)|),

where we upper bounded the entropy of A⋆k by the logarithm of the cardinality of the set Ak .

Applying Lemma 2 to upper bound the cardinality of the smallest α−k-net N (A, ρ, α−k) and rearanging the terms,

we get the following bound:

REG2-TS
T ≤ 2 · d ·

√
T

∞
∑

k=k0+1

√

2 · ρ2k · log(2 · αk + 1).

Now, we note that for linear bandit problems, we can define the first quantization set Ak0 to be the center of the

ball, that is Ak0 = {0d} where 0d is the d-dimensional zero and chose fk0t (0d) = 0d. It is easy to verify that this

choice satisfies Proposition 1 (i) as A⋆k0 = Ât,k0 = 0d and fk0t (A⋆k0 ) = fk0t (Ât,k0) = 0d, as well as fulfills 3 as

R(fk0t (Ât,k0 )) = R(0d) does not depend on the Θ and therefore is independent of A⋆ and A⋆k0+1.

Observing that in the unit ball, by definition the radius is 1, we first note that Ak0 is a (α0)-net for A, implying k0 = 0
and secondly that ρ(fk0+1

t (A⋆k0+1), f
k0
t (A⋆k0 )) = ρ(fk0+1

t (A⋆k0+1), 0d) ≤ 1 and therefore we can use ρk0+1 = 1

which is a better upper bound than 2 · α−(k0+1) + 2 · α−k0 = 2 · (1 + α−1).

Applying those results, we obtain the following bound:

REG2-TS
T ≤ d

√
T · 2 ·

(

√

2 · log(2α+ 1) +

∞
∑

k=2

(2 · α−k + 2 · α−(k−1))
√

2 · log(2αk + 1)

)

.

For instance, choosing α = 20, we have that

2 ·
(

√

2 · log(2α+ 1) +

∞
∑

k=2

(2 · α−k + 2 · α−(k−1))
√

2 · log(2αk + 1)

)

≈ 6.27.

Finally, rounding up this value leads to claimed result.
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