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Optimal Intermittent Particle Filter
Antoine ASPEEL, Amaury GOUVERNEUR, Raphaël M. JUNGERS and Benoit MACQ

Abstract—The problem of the optimal allocation (in the
expected mean square error sense) of a measurement budget
for particle filtering is addressed. We propose three different
optimal intermittent filters, whose optimality criteria depend on
the information available at the time of decision making. For the
first, the stochastic program filter, the measurement times are
given by a policy that determines whether a measurement should
be taken based on the measurements already acquired. The
second, called the offline filter, determines all measurement times
at once by solving a combinatorial optimization program before
any measurement acquisition. For the third one, which we call
online filter, each time a new measurement is received, the next
measurement time is recomputed to take all the information that
is then available into account. We prove that in terms of expected
mean square error, the stochastic program filter outperforms the
online filter, which itself outperforms the offline filter. However,
these filters are generally intractable. For this reason, the filter
estimate is approximated by a particle filter. Moreover, the mean
square error is approximated using a Monte-Carlo approach, and
different optimization algorithms are compared to approximately
solve the combinatorial programs (a random trial algorithm,
greedy forward and backward algorithms, a simulated annealing
algorithm, and a genetic algorithm). Finally, the performance of
the proposed methods is illustrated on two examples: a tumor
motion model and a common benchmark for particle filtering.

Index Terms—Optimal measurement times, Particle filtering,
Sequential Monte Carlo methods, Sparse measurements, Genetic
algorithm.

I. INTRODUCTION

S
TOCHASTIC nonlinear dynamical systems have shown

their ability to model a number of real-world problems [1],

[2], [3]. Particle filtering is a popular approach to estimate the

state of such systems from a set of noisy measurements [4].

This tool has been largely used, among others, in computer vi-

sion [5], [6], [7], positioning and navigation [8], [9], chemistry

[10], [11], mechanics [12], robotics [13], and medicine [14].

In practice, performing measurements may be difficult due to

energy consumption, economic constraints, or health hazards.

For instance, in tumor tracking based on X-ray images, the

number of X-ray acquisitions should be minimized in order to

limit patients’ exposure to harmful radiation [15].

Under such constraints, the problem is to select the best

times to measure the system. In other words, one has a

measurement budget and has to choose when to acquire

measurements. The optimality criterion is to minimize the

expected filtering mean square error (MSE) over the complete

time horizon.
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Intuitively, there are various reasons why regular measure-

ment times may be suboptimal. For example, if the system is

(almost) deterministic but there is a large uncertainty in the

initial state, it may be better to take measurements as early as

possible. However, if the signal amplitude varies greatly over

time, it may be worthwhile to take measurements when the

signal-to-noise ratio is greatest.

First, the problem of optimal measurement budget allocation

is formalized as a nonlinear multistage stochastic program.

The measurement times are selected one after the other and

each measurement time is selected taking the measurements

already observed into account.

Next, an easier related problem that we call the offline

program is presented. It corresponds to selecting all the

measurement times at once and offline, i.e., before any mea-

surement acquisition. In the case of real-time applications

where the time between each measurement is short, being able

to calculate the measurement times offline can be decisive.

However, filtering a signal using the measurement times given

by this offline program gives, on average, poorer filtering

performance because in that case, the information present in

the measurements already acquired is ignored.

Then, we develop an online adaptation of the Offline

problem which we call the online program. This gives better

filtering performance, at the cost of a higher computational

cost, as computations must be carried out online.

A. Related work

In recent decades, the problem of estimating the state of a

system subject to missing measurements has been extensively

studied in both the linear case (see e.g., [16], [17], [18]

and references there in) and the nonlinear case (see e.g.,

[19], [20], [21] and references there in). The latter use the

particle filtering framework. In these previous studies, missing

measurements occur randomly. In this paper, on the contrary,

we aim to choose the measurement times optimally. The

measurement times (or equivalently, the missing measurement

times), are, for our case, parameters to be optimized.

The sensor scheduling (or sensor management) problem is

closely related to ours and has been widely studied. It consists

in choosing at each time step one (or a few) active sensors

among a set in order to minimize the variance of the estimation

error [22], [23], [24], [25], [26], [27], [28], [29], [30], [31].

In some of the works on the sensor scheduling problem [23],

[25], [30], [31], a cost is (or can be) associated to the use of

each sensor and the objective is to minimize a combination of

the error variance and the cost of the sensors. In this case, we

speak of the sensor scheduling problem with a sensing cost.

The problem studied in this article is a constrained version

of the sensor scheduling problem without sensing cost. Indeed,

http://arxiv.org/abs/2204.06265v1
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consider the sensor scheduling problem where an active sensor

must be selected among two available sensors, one correspond-

ing to a measurement acquisition and the other corresponding

to no measurements, i.e., it returns a value independent of

the system state. By adding a constraint on the maximum

number of uses of the measuring sensor, we find the problem

of optimal allocation of a measurement budget.

In addition, the problem we address can be reduced to the

sensor scheduling problem with a sensing cost in the following

way. Consider the sensor scheduling problem with a sensing

cost with two available sensors: the first one is equivalent

to not measuring (this sensor is costless but returns a value

independent of the system state); the second sensor has a cost

c > 0. Then by choosing a sensing cost c such that the obtained

solution respects the measurement budget (e.g., by using a

binary search on c), one can reduce our constrained problem

to a sensor scheduling problem with a sensing cost.

In the linear and Gaussian case, [22] proposes two al-

gorithms to solve the sensor scheduling problem. The first

one provides an optimal solution but can be computationally

expensive. The second one provides a suboptimal solution and

depends on a tuning parameter to make a trade-off between

the quality of the solution and the simplicity of the problem.

In that setting, the estimate is given by the Kalman filter.

Using the monotonicity and concavity of the Riccati equation,

a condition for the non-optimality of the initialization of a

schedule is derived. The exact algorithm uses this condition

to prune the search tree of all possible sensor schedules. On the

other hand, the suboptimal algorithm uses a relaxed condition,

and the optimality gap is proven to be upper bounded by a

linear function of the relaxation parameter. Given the central

role played by the Riccati equation in the proposed method,

this approach seems difficult to generalize to the nonlinear

and non-Gaussian case. For a literature review on the sensor

scheduling problem in the linear and Gaussian case, see

references in [22].

The sensor scheduling problem with a sensing cost has

received attention when the state space is a finite set, i.e.,

the dynamics is a finite hidden Markov model (HMM) [23].

In that article, the estimate is computed using a HMM state

filter and the optimal sensor scheduling policy is obtained by

stochastic dynamic programming. They propose two efficient

methods to obtain a suboptimal solution: the first one is a

one-step look-ahead approximation, the other one is based on

Lovejoy’s algorithm for partially observable Markov decision

processes. The proposed methods rely on the fact that the state

space and the measurement space are finite sets, which is not

the case in the problem we study.

In the case of a continuous state space, [24] proposes

a Gaussian process global optimization method used as a

black-box optimizer to dynamically select sensors in order to

minimize the error at the end of a time horizon. The approach

is model free (the system dynamics is unknown) and only

the last measurement is used to estimate the state of the

system, the previous measurements being used to choose the

last active sensor. On the contrary, in our work, the (known)

system dynamics is used to choose when to measure. Another

difference is that we want to minimize the average MSE.

For nonlinear but Gaussian dynamics, a sparsity promoting

approach is proposed in [25] to choose a set of active sensors

at each time step. A trade-off is made between the number

of active sensors and the current posterior Cramér-Rao lower

bound (PCRLB). This is justified by the fact that the PCRLB is

a lower bound on the mean square estimation error. The main

differences with our approach are that we tackle the general

case of a non-Gaussian dynamics, we do not consider a one-

step look-ahead approximation, and we directly minimize the

MSE instead of the PCRLB.

The sensor scheduling problem has also been studied when

the set of sensors is continuous (e.g., to optimize the spatial po-

sition of a mobile sensor). For this problem, [26], [27] propose

an algorithm using a simulation-based gradient approximation.

Since the core of the method is based on the gradient of

the objective function with respect to the selected sensor, this

approach is not applicable when the set of available sensors

is finite.

For the sensor scheduling problem in the nonlinear and

non-Gaussian case, an optimal one-step look-ahead policy is

proposed in [28], [29] to maximize the Kullbach Leibler di-

vergence between filtering and prediction densities. Intuitively,

it maximizes the information obtained at the current measure-

ment time. Again, the main difference with this work is that

we do not consider the one-step look-ahead approximation,

and we minimize the average MSE.

In [30], [31], the sensor scheduling problem with a sensing

cost for nonlinear and non-Gaussian dynamics is formalized

as a continuous partially observable Markov decision process.

The Q-function is approximated by the policy rollout method.

This requires a base policy, i.e., a heuristic, to choose future

actions in order to estimate the cumulated costs that will follow

the next action. For example, in [30], the available sensors

are spatially distributed to track a moving target and the base

policy selects the sensor closest to the estimated position of

the target. As the authors acknowledge “The choice of a base

policy may have a significant impact on the performance of the

rollout policy.” On the contrary, our method does not require

a priori knowledge of a heuristic to select the measurement

times.

Table I summarizes the state of the art concerning the sensor

scheduling problem.

In the particular case of linear systems subject to Gaussian

noise processes, the selection of optimal measurement times

over a finite time horizon has been studied using the Kalman

filtering framework in both discrete [32] and continuous-time

[33], [34] settings.

B. Contribution

This paper addresses the problem of optimal allocation

of a measurement budget in the discrete-time nonlinear case

with disturbance and measurement noise processes following

arbitrary distributions.

In [35], we have proposed an initial intermittent filter (which

is reported as Problem 2 here). Our contributions in the

present paper are that (i) we show that the problem of optimal

intermittent filtering can be modeled as a stochastic program
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TABLE I: Summary of the state of the art of the sensor scheduling problem. When the sensors are chosen by a one-step

look-ahead policy, the mention “(one step)” is indicated in the column “Objective function”.

Dynamics Sensing cost Objective function References

linear and Gaussian no average MSE [22]

hidden Markov model yes average MSE [23]

model-free no terminal root MSE [24]

nonlinear and Gaussian yes posterior Cramér-Rao lower bound (one step) [25]

nonlinear and non-Gaussian
no

average MSE [26] [27]
Kullback-Leibler divergence between prediction and filtering densities (one-step) [28] [29]

yes average MSE [30] [31]

(see Problem 1); (ii) based on this, we propose a recursive

version of optimal intermittent filter (see Problem 3); (iii)

we prove the Theorem 1 that states that the expected mean

square filtering error is smaller for the stochastic program

filter than for the online filter, which itself is smaller than for

the offline filter; (iv) new optimization algorithms are tested

(greedy forward, greedy backward, and simulated annealing);

and (v) the results are presented (among others) on a new

model inspired by real-world tumor tracking applications.

Overall, the two main contributions of this paper are to

propose an efficient algorithm to solve the problem of optimal

measurement times selection; and to show the interest of

intermittent measurements in particle filtering.

C. Paper outline

The rest of this paper is organized as follows: Section II

presents how to define filtering with intermittent measurements

(Subsection II-A); different versions of optimal intermittent

filters (Subsection II-B) and how to compute them numerically

with different optimization algorithms (subsections II-C and

II-D). Results and discussion are presented in Section III,

where a model of tumor motion is proposed for benchmarking

(Subsection III-A1), in addition to a common benchmark for

particle filters (Subsection III-A2), the optimization algorithms

are compared (Subsection III-B), and the filtering performance

of the offline and online particle filters are compared with a

regular particle filter (Subsection III-C). Finally, Section IV

concludes and discusses possible improvements and perspec-

tives.

A MATLAB (MathWorks, Natick, Massachusetts, USA)

implementation of the presented algorithms and the code that

generate the figures is available on GITHUB at

GITHUB.COM/AMAURYGOUVERNEUR/OPTIMAL MEASUREMENT TIMES FOR PARTICLE FILTERING.

II. MATERIALS AND METHODS

A. Intermittent filter

A discrete time stochastic nonlinear dynamic system de-

scribes the evolution of a state x(t) over the finite time horizon

t = 0, . . . , T . One wants to estimate a quantity z(t) related to

x(t) and has access to previously acquired noisy measurements

y(t) of x(t). Measurements are not available at each time step.

More precisely, only N measurements are available, at times

t1, . . . , tN ∈ {0, . . . , T }. This is modelled as

x(t+ 1) = ft(x(t), w(t)) for t = 0, . . . , T − 1, (1)

y(tj) = gtj (x(tj), v(tj)) for j = 1, . . . , N, (2)

z(t) = ht(x(t)) for t = 0, . . . , T, (3)

x(0) ∼ F , (4)

with ti 6= tj if i 6= j, and x(t) ∈ R
n, y(t) ∈ R

m and

z(t) ∈ R
p. In addition, w(t) and v(t) are random processes

with known probability density functions. Functions ft(·, ·),
gt(·, ·) and ht(·) are known and have compatible dimensions.

The initial state x(0) follows a known distribution F .

For instance, in a tumor tracking problem based on X-ray

images, x(t) ∈ R
6 can be a state vector containing the tumor’s

position and velocity in 3-dimensional space, y(t) ∈ R
2 can

be the 2-dimensional projection of the target and z(t) ∈ R
3

the position of the mass center in 3-dimensional space.

Let us introduce some notations and definitions. We use the

so-called Matlab notation, for j ≤ k, tj:k := {tj, tj+1, . . . , tk}
and y(tj:k) := {y(tj), y(tj+1), . . . , y(tk)}.

We define the intermittent filter estimate,

ẑ(t|y(t1:j)) := Ex(0),w(0),...,w(t−1)[z(t)|y(tk), ∀tk ≤ t], (5)

where EX [·] holds for the expectation operator according to the

random variable X . The name “intermittent” emphasizes that

measurements are not accessible at each time step. Subsection

II-C1 will explain how an intermittent particle filter can be

used to calculate an approximation of the intermittent filter

estimate.

Let’s define the expected filtering error variance,

E [t|y(t1:j)] :=

Ex(0),w(0),...,w(t−1)[‖z(t)− ẑ(t|y(t1:j))‖
2|y(tk), ∀tk ≤ t],

(6)

where ‖ · ‖ is the Euclidean norm. A numerical approach to

estimate this quantity is described in Paragraph II-C2.

Remark 1. Thanks to the condition ∀tk ≤ t in definitions

(5) and (6), it follows that if tk ≤ t < tk+1 ≤ tj , it holds

that ẑ(t|y(t1:j)) = ẑ(t|y(t1:k), y(tk+1:j)) = ẑ(t|y(t1:k)),
and E [t|y(t1:j)] = E [t|y(t1:k), y(tk+1:j)] = E [t|y(t1:k)]. This

ensures the causality of the filter by avoiding future measure-

ments of influencing the present estimation. Otherwise, these

two quantities are random variables because they depend on

y(t1), . . . , y(tj) and therefore on v(t1), . . . , v(tj), which are

random.

https://github.com/AmauryGouverneur/Optimal_Measurement_Times_For_Particle_Filtering
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Remark 2. Instead of the estimator of z(t) defined in (5),

one could use any estimator that can be defined from the

distribution of x(t)|(y(tk), ∀tk ≤ t), for example, the maxi-

mum a posteriori estimator could replace (5) using the method

from [36]. This flexibility is allowed because we will use

a particle filter which estimates the whole distribution of

x(t)|(y(tk), ∀tk ≤ t).
Moreover, since we are going to use black-box optimization

algorithms, another quality criterion could be used instead

of the error variance (6), for example, the squared Euclidean

norm could be replaced by the 1−norm or the ∞−norm.

B. Optimal intermittent filters

An optimal intermittent filter is an intermittent filter whose

measurement times have been chosen according to a certain

optimality criterion. In this section, we present three different

optimality criteria for selecting the measurement times. Each

optimality criterion induces a different optimal intermittent

filter.

1) Stochastic program filter: In the stochastic program

filter, each measurement time tj+1 is chosen taking the already

acquired measurements y(t1:j) into account. Then, each mea-

surement time tj+1 is the solution of an optimization program.

More formally, the stochastic program filter is the intermit-

tent filter whose measurement times are the solution of the

following stochastic program.

Problem 1 (Stochastic Program).

V0(∅; ∅) =min
t1

{

t1−1
∑

t=0

E [t|∅]

+ Ey(t1)

[

min
t2

{

t2−1
∑

t=t1

E [t|y(t1)] + · · ·

+ Ey(tN−1)

[

min
tN

{

tN−1
∑

t=tN−1

E [t|y(t1:N−1)]

+ Ey(tN )

[

T
∑

t=tN

E [t|y(t1:N )]

]}]

· · ·

}]}

,

subject to 0 ≤ t1 < t2 < · · · < tN ≤ T .

Introducing the notation t0 := 0, the problem can be stated

recursively as,

Vj(t1:j ; y(t1:j)) = min
tj+1

{

tj+1−1
∑

t=tj

E [t|y(t1:j)]

+ Ey(tj+1) [Vj+1(t1:j+1; y(t1:j+1))] with tj < tj+1 ≤ T

}

,

(7)

with the terminal condition,

VN (t1:N ; y(t1:N )) =

T
∑

t=tN

E [t|y(t1:N )]. (8)

Solving this multistage stochastic program requires find-

ing an optimal policy for each tj+1. Such optimal policies

are functions that associate the next optimal measurement

time with the previously acquired measurements, i.e., it is

(y(t1), . . . , y(tj)) 7→ tj+1.

Under certain restrictive assumptions, including linearity

and finite stochastic outcomes, stochastic multistage programs

can be solved using scenario trees and duality [37]. For more

complicated problems such as ours (nonlinear, continuous

random variables), one approach is to use reinforcement

learning. In this paper, we propose another approach, which

is to optimize the variables all in once and offline, i.e., before

any measurement acquisition. We use this approximation and

we call it the offline approach.

2) Offline filter: The offline filter is optimal (in the sense

of the expected MSE) if all the measurement times must be

chosen before receiving any measurement. Each measurement

time tj is independent of the measurements that preceded it,

y(t1:j−1).
Formally, the offline filter is the intermittent filter whose

measurement times are the solution of the following offline

program.

Problem 2 (Offline Program).

J0(∅; ∅) := min
0≤t1<···<tN≤T

Ey(t1:N )

[

T
∑

t=0

E [t|y(t1:N )]

]

.

Because each optimal measurement time tj is independent

of the previously acquired measurements y(t1:j−1), all these

optimal measurement times t1:N can be computed at once,

before any measurement acquisition. This can be a decisive ad-

vantage for certain real-world applications if the time between

two discrete time steps is too short to solve an optimization

program. Unlike Problem 1, here the optimization variables

are no longer functions but natural numbers.

3) Online filter: To enhance filtering performance, once the

measurements y(t1:j) have been acquired, we may want to

use them to recompute the next measurement time tj+1 in-

cluding the information previously acquired, i.e., the previous

measurements. This requires solving N different optimization

programs, one for each measurement time.

Formally, the online filter is the intermittent filter for which

each measurement time tj+1 (for j = 0, . . . , N − 1) is the

solution of the following (j + 1)th online program:

Problem 3 ((j + 1)th Online Program). When measurements

y(t1:j) have been acquired, the next measurement time tj+1

is computed by solving

Jj(t1:j ; y(t1:j)) := min
tj+1<···<tN≤T

Ey(tj+1:N )

[

T
∑

t=tj

E [t|y(t1:N )]

]

, such that tj+1 > tj , (9)

where t0 := 0 but the constraint is replaced by t1 ≥ 0 when

j = 0.

In this (j + 1)th program, only the measurement time tj+1

is used by the online filter. To avoid ambiguities, it will

sometimes be noted toj+1. The other variables of the (j +1)th

program, i.e., the tj+2:N , are not the measurement times of
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the online filter because they will be replaced by the solutions

of the next programs. Such online programs can be seen as a

recursive version of the offline program.

Remark 3. Setting j = 0 in Problem 3 gives exactly Problem

2. Consequently, the optimal t1s are the same for these two

problems.

Remark 4. If the dynamical system (1)-(4) is linear and

Gaussian, i.e., functions ft(·, ·), gt(·, ·) and ht(·) are linear

and distributions of w(t), v(t) and x(0) are Gaussian, then

for given measurement times t1, . . . , tN , the optimal filtered

estimate ẑ(t|y(t1:j)) is given explicitly by the Kalman filter

[38, Theorem 2].

In addition, the variance of the filtering error E [t|y(t1:j)] is

independent of the measurements y(t1:j), which implies that

the Kalman gains can be computed offline (see, e.g., [32,

p.3] for details). Consequently, the expectation operators in

Problems 1, 2 and 3 are equivalent to identity operators, which

gives the same problem three times. In conclusion, in the linear

Gaussian case, the optimal solutions of Problems 1, 2 and 3

are the same.

If t1:j are the j first measurement times and y(t1:j) the

corresponding measurements, we denote Fj(t1:j ; y(t1:j)) the

remaining cost-to-go from time tj using the online filter. For

j = 0, . . . , N − 1, it is

Fj(t1:j ; y(t1:j)) =

toj+1−1
∑

t=tj

E [t|y(t1:j)]

+ Ey(toj+1
)

[ toj+2−1
∑

t=to
j+1

E [t|y(t1:j), y(t
o
j+1)] + · · ·

+ Ey(to
N−1

)

[

toN−1
∑

t=to
N−1

E [t|y(t1:j), y(t
o
j+1:N−1)]

+ Ey(to
N
)

[

T
∑

t=to
N

E [t|y(t1:j), y(t
o
j+1:N )]

]]

. . .

]

,

and for j = N , it is

FN (t1:N ; y(t1:N )) =
T
∑

t=tN

E [t|y(t1:N )]. (10)

With this definition, the following recursive relation holds,

Fj(t1:j ; y(t1:j)) =

toj+1−1
∑

t=tj

E [t|y(t1:j)]

+ Ey(to
j+1

)

[

Fj+1(t1:j , t
o
j+1; y(t1:j), y(t

o
j+1))

]

. (11)

In the following theorem, we establish that the expected

mean square filtering error is smaller or equal for the stochastic

program filter than for the online filter, which itself is smaller

or equal than for the offline filter.

Theorem 1. V0(∅; ∅) ≤ F0(∅; ∅) ≤ J0(∅; ∅).

Proof. The proof is available in the appendix.

x(t), y(t), z(t)

t
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−4
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(a) If x(0) = 1.

x(t), y(t), z(t)

t

−6

−5
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−1
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1
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3

4

5

6

1 2•

•

(b) If x(0) = −1.

Fig. 1: Illustration of the system (12) through (14). Vertical

lines represent uniform distributions U([−6, 6]). Each of sce-

narios (a) and (b) has a 50/50 chance of occurring, depending

on whether x(0) = 1 or −1.

The difference between Problems 1 and 3 may not seem

obvious. Indeed, they both require computing the measurement

times online by solving N optimization problems. To clarify

the difference, we propose an example where these two

problems give different solutions.

Example 1. Consider three time steps, i.e., T = 2, with N = 2
measurements and consider the system illustrated in Figure 1

and summarized as

y(0) = z(0) = x(0) =

{

1, with probability 1/2

−1, with probability 1/2,
(12)

y(1) = z(1) = x(1) =

{

w(0), if x(0) = 1

0, if x(0) = −1,
(13)

y(2) = z(2) = x(2) =

{

0, if x(1) 6= 0

w(1), if x(1) = 0,
(14)

where w(0) and w(1) independently follow a uniform distri-

bution between −6 and 6, i.e., w(0), w(1) ∼ U([−6, 6]).
First observe that it is possible to make no filtering error.

To do this, set the first measurement time to t1 = 0 and then,

if y(0) = 1, set the second to t2 = 1 and on the contrary, if

y(0) = −1, set the second to t2 = 2. With this schedule, a

measurement is acquired whenever there is an uncertainty,

which guarantees that there is no filtering error. It is the

solution of Problem 1.

However, we will show that the solutions of both Problems

2 and 3 are to choose t1 = 1 and t2 = 2 which results in a

filtering error at time t = 0.

Doing an exhaustive search for Problem 2 shows that

choosing t1 = 1 and t2 = 2 is optimal. This is due to the

fact that if there is no measurement at t = 1 or at t = 2, a
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large error will be made half the time because of the uniformly

distributed x(t). Then, because the optimal t1s for Problems 3

and 2 are the same (see Remark 3), t1 = 1 is also optimal for

the former. But then, the only remaining possibility for t2 is

t2 = 2. This shows that the optimal solutions of both Problems

2 and 3 are t1 = 1 and t2 = 2 which gives a filtering error

at time t = 0.

This example illustrates that the optimal time t1 of Problem

3 is computed by assuming that the time t2 cannot depend on

y(t1).

C. Numerical approximations

In this section, we present the numerical approximations

which are used to make Problems 2 and 3 tractable. Firstly, we

briefly explain how to approximate numerically the estimate

ẑ(t|y(t1:j)) using a particle filter and then how to approximate

the objective functions of these two problems. We reserve the

term “intermittent filter” for the ideal filter and use “intermit-

tent particle filter” for its approximation. Let us emphasize

that Theorem 1 applies only in the ideal case.

1) Approximation of the estimate: The estimate ẑ(t|y(t1:j))
is not straightforward to compute but can be approximated

using a particle filter.

Essentially, a particle filter algorithm alternates between (i)

a prediction step (also called mutation), used to compute the

estimate at the next time step from the estimate at the current

step; and (ii) a correction step (also called selection) that

updates the current estimation to incorporate the information

acquired in the last measurement. To deal with intermittent

measurements, the correction step (ii) is skipped when no mea-

surement is available, i.e., when t 6= tk for all k. For reasons

of numerical stability, the particle weights are computed and

stored in the logarithmic domain (see, e.g., [39, Section 4.3.1]

for details).

In this paper, we use the sampling importance resampling

particle filter (see [4, Algorithm 4]).

In general, the approximation provided by the particle filter

is biased when the number of particles is finite (the bias being

O(1/# particles)) [40, Section 3.2]. However, we neglect this

aspect in this article and leave the study of the impact of this

bias for future work.

In what follows, we will make a slight abuse of notation by

using the same notation ẑ(t|y(t1:j)) for the quantity (5) and

for its approximation calculated by the particle filter.

2) Approximation of the objective functions: The objective

functions of Problems 2 and 3 contain an expectation operator,

which makes these functions challenging to evaluate. To tackle

this problem, we use a Monte Carlo approximation of the

expectation.

Because the objective function of Problem 2 is the same as

the objective function of Problem 3 for j = 0 (see Remark

3), we focus on the objective function of Problem 3 for any

j, which includes Problem 2.

The Monte Carlo approximation of the objective function

of Problem 3 is represented in Figure 2. Assuming that

the first j measurements y(t1:j) have already been

acquired and that future measurement times tj+1:N

tj+1:N

Model

Particle Filtery(t1:j)

{yk(tj+1:N )}k=1,...,K

{ẑk(t)}k=1,...,K
t=tj ,...,T

Mean Square Error

{zk(t)}k=1,...,K
t=tj ,...,T

1

K

K
∑

k=1

T
∑

t=tj

‖zk(t)− ẑk(t)‖2

Fig. 2: Representation of the Monte Carlo algorithm that esti-

mates Ey(tj+1:N )[
∑T

t=tj
E [t|y(t1:N )]]. The outputs generated

by the Model block are drawn according to Equations (1)

through (4) and the distributions of v(t) and w(t). The particle

filter computes an estimate ẑk(t) = ẑk(t|y(t1:j), y
k(tj+1:N ))

of zk(t) from previous intermittent measurements. The Mean

Square Error block computes the mean squared of the differ-

ence between its inputs; it is the right-hand side of Equation

(15).

are fixed, one can simulate K realizations of the state

{xk(t)}k=1,...,K
t=0,...,T drawn according to Equations (1) and (4).

The corresponding quantities that remain to be estimated

{zk(t)}k=1,...,K
t=tj ,...,T

can be computed using Equation (3).

Similarly, corresponding measurements {yk(tl)}
k=1,...,K
l=j+1,...,N

can be simulated thanks to Equation (2). For each k, the

simulated measurement sequence can be concatenated to

the known measurements to give a complete measurement

sequence y(t1), . . . , y(tj), y
k(tj+1), . . . , y

k(tN ), from

which the particle filter computes the estimates

{ẑk(t|y(t1), . . . , yk(tN ))}t=tj ,...,T of {zk(t)}t=tj ,...,T .

Then, thanks to Definition (6), the Monte Carlo estimator is

computed as

Ey(tj+1:N )

[

T
∑

t=tj

E [t|y(t1:N )]

]

= Ey(tj+1:N )

[

T
∑

t=tj

Ex(0),w(0),...,w(T−1)

[

‖z(t)− ẑ(t|y(t1:N ))‖2
∣

∣

∣
y(tl), ∀tl ≤ t

]

]

≈
1

K

K
∑

k=1

T
∑

t=tj

‖zk(t)− ẑk(t|y(t1:j), y
k(tj+1:N ))‖2. (15)

Computing this Monte Carlo approximation requires run-

ning the particle filter K times, which can be computationally

expensive.
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The fact that we have access only to an approximation

of the objective function requires particular attention during

the optimization. Note that since the particle filter provides a

biased approximation, the approximation of the cost function

may be biased as well. However, accounting for this bias is

outside the scope of this paper and is left to future work.

D. Optimization algorithms

Solving the combinatorial optimization Problem 2 (or equiv-

alently, in light of Remark 3, Problem 3 with j = 0) with

an exhaustive search would require evaluating the objective

function
(T+1)!

(T+1−N)!N ! times, i.e., the number of subsets of size

N in a set of size T + 1. This is computationally intractable

for large N and T values.

In this section, we present five different heuristic optimiza-

tion algorithms to find an approximate solution for Problems

2 and 3 efficiently.

1) Random trial algorithm (RT): The random trial algo-

rithm samples measurement time sets uniformly at random and

evaluates their corresponding costs. The measurement time set

with minimum cost is returned.

2) Greedy forward algorithm (GF): The greedy forward

algorithm begins with an empty measurement set. Sequentially,

it adds the measurement times one at a time such that, at each

iteration, the added measurement time minimizes the cost. It

stops when the set contains N measurement times.

3) Greedy backward algorithm (GB): The greedy backward

algorithm works in the opposite direction from the greedy

forward algorithm. It begins with a complete measurement

set. Sequentially, it takes out the measurement times one at

a time such that, at each iteration, the dropped measurement

time minimizes the cost. It stops when the set contains N
measurement times.

4) Simulated annealing algorithm (SA): The implementa-

tion of the SA algorithm is done according to [41, Section

1.2.3]. The initial temperature parameter is T ° = 10 and

the geometric temperature decay rate is 0.9, i.e., after each

generation, T ° := 0.9 · T °. If a mutation reduces the cost, it

is kept. If it increases the cost, it is kept with probability

exp(−(cost increase)/T °). The mutations are executed by

prohibiting the duplication of measurement times and the

mutation probability is 0.1 by measurement time.

5) Genetic algorithm (GA): The implementation of the

genetic algorithm is based on [42]. The selection of the

individuals kept for the next generation is done according

to stochastic universal sampling [42, Section 5.4]. To en-

sure that the number of measurement times remains constant

over generations, a count preserving crossover operator is

implemented [43, Section 3.6]. It prevents the production of

individuals (tj+1, . . . , tN ) for which tk = tl with k 6= l. For

the same reason, the mutations are executed by prohibiting

the duplication of measurement times. The algorithm uses

sigma scaling with a unitary sigma coefficient [42, Section

5.4]. Crossover probability is 1 and mutation probability per

measurement time is 0.003.

When the RT, SA or GA algorithm is used to solve the N
online Problems 3, the solution found for the j th problem can

be added to the initial population when solving the (j + 1)th

problem. This can speed up the convergence of the algorithm

but also reduce the exploration capacity of these methods. In

this work, we do not use this acceleration trick.

As mentioned in Subsection II-C, the objective functions of

Problems 2 and 3 can be evaluated approximately only. This

makes minimization difficult if it is too sensitive to bad cost

function estimations. To face this issue, the SA algorithm and

the GA return the best individual of the last generation instead

of the best individual in all generations.

In Section III, the performances of these five algorithms

are compared. It will show that the GA outperforms the other

algorithms on the studied example.

III. RESULTS AND DISCUSSION

A. Results parameters

In this section, first we present two dynamical systems

used for the results, then we describe the parameters of the

simulations and the performance indicators.

1) Tumor motion model: To illustrate the performances of

our method, we study a model describing one-dimensional

tumor motion. As mentioned in introduction, the problem of

tracking tumors with X-rays requires doing the best of each

X-ray acquisition in order to spare healthy tissues.

The duration between each discrete time step is δ. The tumor

position to estimate z(t) is a shifted sinusoidal signal with a

time-varying amplitude a(t), a time-varying shift b(t), and a

constant frequency ω. Both a(t) and b(t) are bounded random

walks. Bounds ensure that values remain realistic over time.

In addition, the constant oscillation frequency ω is picked

uniformly at random at the beginning of the process. Each

measurement y(t) is a noisy version of the position z(t).

Let us define the state x(t) =
[

a(t) b(t) ω(t)
]⊤

∈ R
3

and the process noise w(t) =
[

wa(t) wb(t)
]⊤

∈ R
2. The

dynamic of the system is defined as follows:

x(t+ 1) =





a(t+ 1)
b(t+ 1)
ω(t+ 1)





= f(x(t), w(t)) (16)

:=





clip(a(t) + wa(t), a, ā)
clip(b(t) + wb(t), b, b̄)

ω(t)



 ,

y(t) = gt(x(t), v(t)) = a(t) sin(ω(t)tδ) + b(t) + v(t),
(17)

z(t) = ht(x(t)) = a(t) sin(ω(t)tδ) + b(t), (18)

x(0) =





a(0)
b(0)
ω(0)



 ∼ U
(

[a, ā]× [b, b̄]× [ω, ω̄]
)

. (19)

Equations (16), (17) and (18) hold for t = 0, . . . , T − 1,

t ∈ {t1, . . . , tN}, and t = 0, . . . , T , respectively. Noises

wa(t), wb(t) and v(t) are independent zero mean Gaussian

noises and have a unitary standard deviation, i.e., σa =
σb = σv = 1 [mm]. The clipping function is defined as

clip(x, x, x̄) := min(max(x, x), x̄). Equation (19) indicates
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that the initial state is uniformly distributed at random on the

indicated domain.

We consider N = 11 measurements in the range of 0 to

T = 30. To make this model more realistic, the values of a,

ā, b, and b̄ are inspired from [44, Table 1] and the values of

ω and ω̄ are inspired from [45, Table 1]. The parameters of

the system are

a = 8.8 [mm], ā = 24 [mm],

b = −5.8 [mm], b̄ = 5.8 [mm],

ω = 1.3 [rad/s], ω̄ = 2.1 [rad/s],

δ = 0.25 [s], σa = σb = σv = 1 [mm],

T = 30, N = 11.

The importance density used by the particle filter is the prior

density, except for ω(t) where we use ω(t+1) = clip(ω(t) +
wω(t), ω, ω̄) with wω(t), an independent zero mean Gaussian

noise with standard deviation σω = 0.005.

2) A common benchmark for particle filters: We also test

our method on the following widely studied model [4], [35],

[46], [47], [48]:

x(t+ 1) =
x(t)

2
+

25x(t)

1 + x(t)2
+ 8 cos(1.2t) + w(t), (20)

y(t) =
x(t)2

20
+ v(t), (21)

z(t) = x(t), (22)

x(0) ∼ N (0, 52), (23)

where x(t), y(t), z(t), w(t), v(t) ∈ R. Equations (20), (21)

and (22) hold for t = 0, . . . , T − 1, t ∈ {t1, . . . , tN},

and t = 0, . . . , T , respectively. Quantities w(t), v(t) and

x(0) are randomly distributed according to independent zero

mean Gaussian distributions with standard deviations σw = 1,

σv(t) = sin(0.25t) + 2 and σx0
= 5, respectively. As for

the tumor model, N = 11 measurements are allowed and the

horizon is set at T = 30. For this model, the importance

density used by the particle filter is the prior density.

3) Performance indicators: To test the proposed meth-

ods, we simulate many realizations of {y(t)}t=0,...,T and

{z(t)}t=0,...,T according to system dynamic on which our

filtering method is applied. Then, the filtering mean square

error, MSE = 1
T+1

∑T

t=0 ‖z(t) − ẑ(t)‖2, is computed and

is compared with the filtering mean square error MSEREG

obtained with regular measurement times,

t1:N =

{

Round

[

kT

N − 1

]
∣

∣

∣

∣

k = 0, . . . , N − 1

}

, (24)

where Round[·] is the rounding operator. More precisely, we

look at the gain

G := log10

(

MSEREG

MSE

)

. (25)

It illustrates the merits of using optimal measurement times

instead of regular ones. A positive gain indicates that the

considered intermittent particle filter outperforms the regular

one.

As performance indicators, we look at the mean and median

gain and the proportion of positive gain over all the simula-

tions. Notice that the mean gains can be seen as an estimation

of the expected gain and the proportion of positive gains as

an estimation of the probability of outperforming the regular

measurement filter.

4) Optimization and simulations parameters: As the mea-

surement times that are the solution of the online Problem 3

are a function of the previous measurements, the optimization

algorithm has to be run on each simulation. This increases

the computation time significantly. Therefore, the solutions

of Problems 2 and 3 are studied separately and the number

of simulations and the optimization parameters have been set

accordingly. The values of the optimization parameters and

the simulation parameters are given in Table II. Note that the

number of particles used for the optimization is different from

the number of particles for the filtering.

Parameters Offline Online

Optimization

# draws K 1000 200
# particles 200 100
pop. size 50 30
# generations 25 15

Simulations
# simulations 100000 500
# particles 1000 1000

TABLE II: Values of the model parameters, test parameters,

and optimization parameters for the offline Problem 2 and the

online Problem 3.

B. Comparison of optimization algorithms

The different optimization algorithms proposed in Subsec-

tion II-D are tested on the offline Problem 2 for the tumor

motion model described in Section III-A1.

For all the optimization algorithms, the evolution of the

cost of Problem 2 with respect to the number of cost function

evaluations is illustrated in Figure 3. Because the number of

cost function evaluations of the GF and GB algorithm is fixed,

they are represented by points in the figure.

One can observe that all five optimization algorithms return

a measurement subset with associated expected MSE signif-

icantly lower than the regularly spaced measurements. The

final expected MSE of the SA, RT, GF and GB optimization

algorithms all lie close to 6. Note that the GF and GB

algorithms give good results for a relatively small number of

evaluations of the cost function. Consequently, they can be a

good option if computing resources are limited. The GA and

SA algorithms perform notably better with a final minimum

cost around 5.5. One can note that the difference between

GA average and minimum cost decreases over generations

before reaching quasi-convergence, meaning that most of the

individuals are identical, which is the desired convergence

behavior for a GA.

As a result of these observations, the GA is used as the

optimization algorithm in the rest of the paper.

C. Filtering performance

In this subsection, we analyze the filtering performance

obtained using the offline (Problem 2) and online (Problem 3)
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Fig. 3: Evolution of the minimum cost of the offline Problem

2 with respect to the number of cost function evaluations for

the different optimization algorithms: genetic algorithm (GA),

simulated annealing (SA), random trial (RT), greedy forward

(GF), and greedy backward (GB). It illustrates the quality of

minimization for given computational resources. The evolution

of the average cost of the population of the GA algorithm at

each generation and the cost of regularly spaced measurement

times are shown as well.

measurement times. First, we report the results on the tumor

motion model (Subsection III-A1), then we present the results

for the common benchmark (Subsection III-A2).

1) Results for the tumor motion model (Subsection III-A1):

The histogram of the gains G for the offline Problem 2 and

for the online Problem 3 can be found in Figure 4. The

offline gain is computed over 100000 simulations and the

online gain is computed over 500 simulations. The vertical

line corresponds to the null gain. These histograms can be

interpreted as approximations of the probability density of

the gains G. The proportion of positive gain for the GA

algorithm can be read as the area of the histogram above 0. The

corresponding performance indicators are reported in Table III

for both the offline particle filter (related to Problem 2) and

online particle filter (related to Problems 3).

The mean and median gains are positive for our offline and

online methods, which indicates that they generally outperform

the regular particle filter. In addition, the proportion of positive

gain indicates that our offline and online methods outperform

the regular particle filter in 69.3% and 76.3% of the cases,

respectively.

Offline Online

Mean gain (± std) 0.142 (± 0.269) 0.238 (± 0.296)

Median gain 0.134 0.248

Proportion positive gain 69.3 % 76.3 %

TABLE III: Performance indicators for the offline and online

solutions. The considered system, the performance indicators,

and the optimization and simulation parameters are described

in Subsections III-A1, III-A3, and III-A4, respectively.

Figure 5 represents a particular trajectory z(t) and the
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Fig. 4: Histograms of the gain G (see Equation (25)) for the

tumor motion model (Subsection III-A1). The histograms have

been obtained over 100000 and 500 simulations for the offline

and online particle filters, respectively.

trajectory filtered by a particle filter with regular measurement

times (see Equation (24)), as well as with the offline and online

particle filters. In all three cases, the measurement times are

indicated. As expected, we obtain better filtering performance

using the online particle filter (the gain is Gonline = 0.20) than

the offline particle filter (the gain is Goffline = 0.15), the largest

mean square filtering error being obtained with the regular

measurements.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−10

−5

0

5
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15
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25

Time, s

z
(t
)

Position, z(t)
Regular ẑ(t)
Offline ẑ(t)
Online ẑ(t)
Regular times tj
Offline times tj
Online times tj

Fig. 5: Comparison of a particular realization z(t) with the

filtered values ẑ(t) obtained with a particle filter with regular

measurement times and both the offline and the online particle

filters. The gains on the complete sequence are Goffline = 0.223
and Gonline = 0.616. Results are simulated from the tumor

motion model (Subsection III-A1).

2) Results for the common benchmark (Subsection III-A2):

Figure 6 represents the histogram of the offline and online

gains G for the common benchmark. The corresponding

performance indicators are reported in Table IV. It is observed
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that both the offline and online methods outperform the

particle filter with regular measurement times. In addition, the

performance difference between the offline and online methods

is important. The fact that the performance gap between the

offline and online particle filters is larger for this common

benchmark than for the tumor motion model can be related

to Remark 4. Indeed, if the model were linear and Gaussian,

there would be no performance gap.
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Fig. 6: Histograms of the gain G (see Equation (25)) for the

common benchmark (Subsection III-A2). The histograms have

been obtained over 100000 and 500 simulations for the offline

and online particle filters, respectively.

Offline Online

Mean gain (± std) 0.221 (± 0.225) 0.365 (± 0.253)

Median gain 0.216 0.340

Proportion positive gain 84.3 % 93.8 %

TABLE IV: Performance indicators for the offline and online

solutions. The considered system, the performance indicators,

and the optimization and simulation parameters are described

in Subsections III-A2, III-A3, and III-A4, respectively.

Finally, Figure 7 shows a trajectory of the common bench-

mark as well as the tracking obtained by the regular, offline

and online particle filters. The measurement times are also

displayed.

IV. CONCLUSION

The problem of the optimal intermittent particle filter has

been addressed. This consists in selecting the measurement

times of the particle filter according to a certain optimality

criterion.

We have proposed three variants of expected mean square

error minimization giving rise to three different intermittent

filters: the stochastic program filter, the offline filter, and the

online filter.

A theorem has been proven that compares the performance

of these three intermittent filters.

Then, different algorithms to compute the measurement

times of the offline and online particle filters have been
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Regular times tj
Offline times tj
Online times tj

Fig. 7: Comparison of a particular realization z(t) with the

filtered values ẑ(t) obtained with a particle filter with regular

measurement times and both the offline and the online particle

filters. The gains on the complete sequence are Goffline = 0.173
and Gonline = 0.283. Results are simulated from the common

benchmark (Subsection III-A2).

proposed: the random trial, greedy forward, greedy backward,

simulated annealing, and genetic algorithms. These different

optimization algorithms were compared on a tumor movement

model inspired by real data. The genetic and simulated an-

nealing algorithms are the two optimizers showing the best

performance.

Finally, on this same tumor model, our offline and online

particle filters were compared with a particle filter with regular

measurement times. The offline and online particle filters

outperform the regular particle filter in 69.3% and 84.3%
of the cases, respectively. For a second example, the regular

particle filter is outperformed in 76.3% and 93.8% of the cases

by the offline and online particle filters, respectively.

Further work will focus on robustness analyses to de-

termine how model uncertainties affect the performance of

the proposed methods for situations in which the system

dynamics are known only approximately. In addition, we will

use a reinforcement learning approach to solve the stochastic

program and test the stochastic program particle filter. Other

continuations of this work will consist of experimental vali-

dation on real-world data, for example, in the case of mobile

tumor tracking. It would also be interesting to investigate a

continuous time version of the problem.

Overall, our results demonstrate the added value of selecting

measurement times according to system dynamics for the

optimal estimation of a state from limited measurements.

APPENDIX

PROOF OF THEOREM 1

The structure of the proof consists in (i) observing that

once all the measurements are known, cost-to-go is equal

for the three filters; then (ii) we show that if the cost-to-go

when choosing the measurement time tj+1 is smaller with the

stochastic program filter than with the online filter, which itself
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is smaller than with the offline filter, then this is also the case

when choosing the measurement time tj ; and finally (iii) a

backward recursive argument shows that this is also true for

the initial cost-to-go.

This structure is applied to each inequality separately.

Proof of the first inequality: From Relations (8) and (10)

it follows that for all t1:N and y(t1:N),

VN (t1:N ; y(t1:N )) = FN (t1:N ; y(t1:N )). (26)

For a fixed j ∈ {0, . . . , N − 1}, assume that for all t1:j+1

and y(t1:j+1) it holds that

Vj+1(t1:j+1; y(t1:j+1)) ≤ Fj+1(t1:j+1; y(t1:j+1)). (27)

Then, taking the expectation with respect to y(tj+1) and

adding a same term on both sides, we have,

tj+1−1
∑

t=tj

E [t|y(t1:j)] + Ey(tj+1)

[

Vj+1(t1:j+1; y(t1:j+1))

]

≤

tj+1−1
∑

t=tj

E [t|y(t1:j)] + Ey(tj+1)

[

Fj+1(t1:j+1; y(t1:j+1))

]

,

for all t1:j+1 and y(t1:j). Taking the minimum over all tj+1

on the left-hand side and fixing tj+1 to toj+1 on the right-hand

side, we have,

min
tj+1

{

tj+1−1
∑

t=tj

E [t|y(t1:j)]

+ Ey(tj+1)

[

Vj+1(t1:j+1; y(t1:j+1))

]}

≤

toj+1−1
∑

t=tj

E [t|y(t1:j))]

+ Ey(to
j+1

)

[

Fj+1(t1:j , t
o
j+1; y(t1:j), y(t

o
j+1))

]

,

for all t1:j and y(t1:j). From Relation (7) on the left-hand side

and Relation (11) on the right-hand side, we have

Vj(t1:j ; y(t1:j)) ≤ Fj(t1:j ; y(t1:j)), (28)

for all t1:j and y(t1:j).
But then, because Relation (27) implies (28) and because

of (26), we have V0(∅; ∅) ≤ F0(∅; ∅).
Proof of the second inequality: It follows from a similar

argument. We define

JN (t1:N ; y(t1:N)) := FN (t1:N ; y(t1:N )). (29)

Then, for a fixed j ∈ {0, . . . , N−1}, assume that for all t1:j+1

and y(t1:j+1) it holds that

Fj+1(t1:j+1; y(t1:j+1)) ≤ Jj+1(t1:j+1; y(t1:j+1)). (30)

Rewriting the right-hand side according to (9) gives

Fj+1(t1:j+1; y(t1:j+1)) ≤

min
tj+2<···<tN≤T

Ey(tj+2:N )

[

T
∑

t=tj+1

E [t|y(t1:N )]

]

.

The right-hand side is upper bounded by

Ey(tj+2:N )

[

T
∑

t=tj+1

E [t|y(t1:N )]

]

,

for all tj+2:N . Then one can write

Fj+1(t1:j+1; y(t1:j+1)) ≤

Ey(tj+2:N )

[

T
∑

t=tj+1

E [t|y(t1:N )]

]

,

for all t1:N and y(t1:j+1). Taking the expectation with respect

to y(tj+1) and adding a same term on both sides gives

tj+1−1
∑

t=tj

E [t|y(t1:j)] + Ey(tj+1)

[

Fj+1(t1:j+1; y(t1:j+1))

]

≤

tj+1−1
∑

t=tj

E [t|y(t1:j)] + Ey(tj+1:N )

[

T
∑

t=tj+1

E [t|y(t1:N )]

]

, (31)

for all t1:N and y(t1:j). Using the fact that the first term of the

right-hand side is independent of y(tj+1:N ), and then thanks

to Remark 1, the right-hand side can be rewritten successively

as

Ey(tj+1:N )

[

tj+1−1
∑

t=tj

E [t|y(t1:j)] +
T
∑

t=tj+1

E [t|y(t1:N )]

]

=

Ey(tj+1:N )

[

tj+1−1
∑

t=tj

E [t|y(t1:N )] +

T
∑

t=tj+1

E [t|y(t1:N )]

]

.

By combining the two sums on this right-hand side, the

inequality (31) becomes

tj+1−1
∑

t=tj

E [t|y(t1:j)] + Ey(tj+1)

[

Fj+1(t1:j+1; y(t1:j+1))

]

≤

Ey(tj+1:N )

[

T
∑

t=tj

E [t|y(t1:N )]

]

,

for all t1:N and y(t1:j). We set tj+1:N to the value that

minimizes this right-hand side. In so doing, tj+1 = toj+1 and

the inequality becomes

toj+1−1
∑

t=tj

E [t|y(t1:j)]

+ Ey(to
j+1

)

[

Fj+1(t1:j , t
o
j+1; y(t1:j), y(t

o
j+1))

]

≤

min
tj+1<···<tN≤T

Ey(tj+1:N )

[

T
∑

t=tj

E [t|y(t1:N )]

]

,

for all t1:j and y(t1:j). Now, using Relation (11) on the left-

hand side and Relation (9) on the right-hand side, we obtain

Fj(t1:j ; y(t1:j)) ≤ Jj(t1:j ; y(t1:j)), (32)

for all t1:j and y(t1:j).
Finally, because Relation (30) implies Relation (32) and

because of (29), we have F0(∅; ∅) ≤ J0(∅; ∅), which concludes

the proof.
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