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ABSTRACT

Particle filtering is a powerful tool for target tracking. When
the budget for observations is restricted, it is necessary to re-
duce the measurements to a limited amount of samples care-
fully selected. A discrete stochastic nonlinear dynamical sys-
tem is studied over a finite time horizon. The problem of se-
lecting the optimal measurement times for particle filtering is
formalized as a combinatorial optimization problem. We pro-
pose an approximated solution based on the nesting of a ge-
netic algorithm, a Monte Carlo algorithm and a particle filter.
Firstly, an example demonstrates that the genetic algorithm
outperforms a random trial optimization. Then, the interest of
non-regular measurements versus measurements performed at
regular time intervals is illustrated and the efficiency of our
proposed solution is quantified: better filtering performances
are obtained in 87.5% of the cases and on average, the relative
improvement is 27.7%.

Index Terms— Optimal measurement times, Particle
filtering, Sequential Monte Carlo methods, Sparse measure-
ments, Genetic algorithm.

1. INTRODUCTION

Stochastic nonlinear dynamical systems have shown their
ability to model a number of real-world problems [1]. Par-
ticle filtering is an efficient approach to estimate the state of
such systems from a set of noisy measurements [2]. This
tool has been largely used, among others, in computer vi-
sion [3, 4, 5]. In practice, performing measurements may be
difficult due to energy consumption, economical constraints
or health hazards. For instance, in tumor tracking based on
X-ray images, the number of X-ray acquisitions should be
minimized in order to limit patients’ exposure to harmful
radiations [6].

Under such constraints, the problem is then to select the
best moments to measure the system a priori, i.e. before any
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measurement acquisition. In other words, one has a mea-
surement budget and has to choose when to acquire measure-
ments. The optimality criterion is to minimize the expected
filtering mean squared error (MSE) over the complete time
horizon.

In the particular case of linear systems subject to Gaussian
noise processes, the selection of optimal measurement times
over a finite time horizon has been studied using the Kalman
filtering framework, in both discrete [7] and continuous-time
[8, 9] settings. However, more general formulations have re-
ceived little attention in the literature. This paper addresses
the problem of providing optimal measurement times in the
discrete-time nonlinear case with perturbation and measure-
ment noise processes following arbitrary distributions. Our
approach relies on particle filtering, the efficiency of which
has been widely demonstrated in nonlinear dynamical sys-
tems [10, 11, 12].

The two main contributions of this paper are (i) to pro-
pose an efficient algorithm to solve the problem of optimal
measurement times selection and (ii) to show the interest of
non-regular measurements in particle filtering.

This paper is organised as follows, section 2 presents
how to implement particle filtering with intermittent mea-
surements (subsection 2.1); the criterion to select a good set
of measurement times (subsection 2.2) and how to compute
them (subsections 2.3 and 2.4). An example is presented
and discussed in section 3. Finally, section 4 concludes and
discusses possible improvements and perspectives.

A MATLAB (MathWorks, Natick, Massachusetts, USA)
implementation of all the presented algorithms and the code
that generate all figures are available on GITHUB at
GITHUB.COM/AMAURYGOUVERNEUR/OPTIMAL
MEASUREMENT BUDGET ALLOCATION FOR PARTICLE
FILTERING.

2. MATERIALS AND METHODS

2.1. Intermittent particle filter

A discrete stochastic nonlinear dynamical system describes
the evolution of a state x(t) over the finite time horizon t =
0, . . . , T . One wants to estimate a quantity z(t) related to
x(t) and has access to previously acquired noisy measure-
ments y(t) of x(t). Measurements are not available at each
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time step. More formally, a measurement y(t) is only avail-
able for t ∈ M, where M ⊆ {0, . . . , T} is of size N , i.e.
|M| = N . This is modelled as

x(t+ 1) = ft(x(t), w(t)) for t = 0, . . . , T − 1, (1)
y(t) = gt(x(t), v(t)) for t ∈M, (2)
z(t) = ht(x(t)) for t = 0, . . . , T, (3)
x(0) ∼ F , (4)

where x(t) ∈ Rn, y(t) ∈ Rm and z(t) ∈ Rp. In addition,
w(t) and v(t) are random processes with known probabil-
ity density functions. Functions ft(·, ·), gt(·, ·) and ht(·) are
known and have compatible dimensions. The initial state x(0)
follows a known distribution F .

For instance, in a tumor tracking problem based on X-ray
images, x(t) ∈ R6 can be a state vector containing the tumors
position and velocity in the 3-dimensional space, y(t) ∈ R2

can be the 2-dimensional projection of the target and z(t) ∈
R3 the position of the mass center in the 3-dimensional space.

An estimate ẑM(t) = PF [{y(τ)}τ≤t, τ∈M] of z(t)
based on previous measurements {y(τ)}τ≤t, τ∈M, can be
computed by a particle filter PF [·]. It is the expectation of
the estimated probability density function.

Essentially, a particle filter algorithm alternates between
(i) a prediction step (also called mutation), used to estimate
the state at the next time step from the estimate at the cur-
rent step; and (ii) a correction step (also called selection)
that updates the state estimation to incorporate the informa-
tion acquired in the last measurement. To deal with intermit-
tent measurements, the correction step (ii) is skipped when no
measurement is available, i.e. when t /∈M.

In this paper, we use the sampling importance resampling
particle filter (see Algorithm 4 in [2]).

2.2. Optimal intermittent particle filter

The optimal intermittent particle filter is the particle filter for
which the set of N measurement timesM minimizes the ex-
pected filtering MSE. This is formalized as

min
M⊆{0,...,T}

EMSE[M] := E

[
1

T + 1

T∑
t=0

‖z(t)− ẑM(t)‖2
]

subject to |M| = N and equations (1) to (4),
(5)

where ẑM(t) is obtained from the particle filter and ‖·‖ is the
Euclidean norm (note that it could be any other norm). The
expectation is on the random variables x(t) and v(t). The de-
pendency of the cost function EMSE[M] on these two quan-
tities can be expressed explicitly using equations (2)-(3), it
gives

E

[
1

T + 1

T∑
t=0

‖ht(x(t))− PF [{gτ (x(τ), v(τ))}τ∈M,τ≤t]‖2
]
.

Solving problem (5) yields the best measurement times a pri-
ori, i.e. before any measurement acquisition.

2.3. Monte Carlo algorithm

A first challenge to solve problem (5) is to compute the
expectation. To tackle this problem, we estimate this ex-
pectation using a Monte Carlo approach. For a given set
of measurement times M, one can simulate K realisa-
tions {xk(t)}k=1,...,K

t=0,...,T , {yk(t)}
k=1,...,K
t∈M and {zk(t)}k=1,...,K

t=0,...,T

drawn according to (1)-(4). From each simulated sequence of
measurements {yk(t)}t∈M, the particle filter computes esti-
mates {ẑkM(t)}t=0,...,T := {PF [{yk(τ)}τ≤t,τ∈M]}t=0,...,T

of {zk(t)}t=0,...,T . These quantities are used to estimate the
expectation in problem (5). The Monte Carlo estimator of
problem (5), denoted by ÊMSE[·], is given by

EMSE[M] = E

[
1

T + 1

T∑
t=0

‖z(t)− ẑM(t)‖2
]
≈

1

K(T + 1)

K∑
k=1

T∑
t=0

‖zk(t)− ẑkM(t)‖2 :=̂EMSE[M]. (6)

With this notation, problem (5) is approximately equiva-
lent to

min
M⊆{0,...,T}

ÊMSE[M] subject to |M| = N. (7)

The fact that we only have access to an approximation of the
objective function requires a particular attention during the
optimization. The nesting of the Monte Carlo algorithm and
the particle filter is represented in figure 1.

2.4. Genetic algorithm

Solving the combinatorial optimization problem (7) corre-
sponds to finding the set M ⊆ {0, . . . , T} of cardinality N
that minimizes ÊMSE[M]. An exhaustive search would re-
quire to test all admissibleM which represents (T+1)!

(T+1−N)!N !

possibilities. It is computationally intractable for large N and
T .

A genetic algorithm [13] is used to find an approximate
solution of problem (7). Genetic algorithms are generally
used for unconstrained optimization. In our case, to deal with
constraint |M| = N , a count preserving crossover is imple-
mented [14].

If measurement times are widely spaced for an individual
of the genetic algorithm, it can happen that all particles of the
particle filter have zero weights (due to degeneracy problem
[2]). In such a case, the corresponding individual is killed and
will not be used for next generations.

As mentioned in the previous section, the objective
function EMSE[M] can only be evaluated approximately as
ÊMSE[M]. It makes the minimization difficult if too sensi-
tive to bad cost function estimations. To face this issue, our



M

Draw

{xk(t)}k=1,...,K
t=0,...,T {vk(t)}k=1,...,K

t∈M

Model

PF

{yk(t)}k=1,...,K
t∈M

{ẑkM(t)}k=1,...,K
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MSE

{zk(t)}k=1,...,K
t=0,...,T

ÊMSE[M]

Fig. 1. Representation of the Monte Carlo algorithm which
computes M 7→ ÊMSE[M]. The outputs generated by the
Draw block are drawn according to (1), (4) and the distribu-
tion of v(t). The model block uses respectively equations (2)
and (3) to compute the yk(t) and zk(t) that correspond to the
xk(t) and the vk(t) received in inputs. The PF block repre-
sents a particle filter that computes an estimate ẑkM(t) of zk(t)
from previous intermittent measurements {yk(τ)}τ≤t,τ∈M.
The MSE block computes the mean squared of the difference
between the inputs, it is ÊMSE[M] defined in equation (6).

genetic algorithm returns the best individual of the last gen-
eration instead of the best individual among all generations.

In Section 3, the performance of the genetic algorithm is
compared to a random trial optimizer. It will show that the
ability of evolutionary algorithms to broadly sample a pop-
ulation makes the genetic algorithm better suited for the ad-
dressed problem.

Our implementation of the genetic algorithm uses stochas-
tic universal sampling and sigma scaling with unitary sigma
coefficient [13]. Crossover probability is 1 and mutation
probability per gene is 0.003.

3. RESULTS AND DISCUSSION

In order to illustrate the performances obtained by our ap-
proach, the following commonly studied model is used [2,

0 200 400 600 800 1000 1200
number of cost function evaluations

22

24

26

28

30

32

34

36

Ê
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Fig. 2. Evolution of the average and minimum cost ÊMSE with
respect to the number of cost function evaluations for both
the genetic algorithm (GA) and the random trials optimizer
(RT). It illustrates the quality of minimization for given com-
putational resources. One generation of the genetic algorithm
corresponds to 50 evaluations.

15, 16, 17],

x(t+ 1) =
x(t)

2
+

25x(t)

1 + x(t)2
+ 8 cos(1.2t) + w(t), (8)

y(t) =
x(t)2

20
+ v(t) for t ∈M, (9)

z(t) = x(t), (10)

x(0) ∼ N (0, 52), (11)

where w(t) ∼ N (0, 1) and v(t) ∼ N
(
0, (sin(0.25t) + 2)2

)
are zero mean independent Gaussian noise processes. Equa-
tions (8) and (10) hold for t = 0, . . . , T −1 and t = 0, . . . , T ,
respectively.

The problem is to find the best setM ofN = 21 measure-
ment times in the range of 0 to T = 60 such that ÊMSE[M] is
minimized. Even for a problem this size, an exhaustive search
would require to test over 1.2 · 1015 admissibleM.

In the following, the particle filter uses 500 particles, the
Monte Carlo algorithm uses K = 1, 000 draws, and the pop-
ulation size and the number of generations of the genetic al-
gorithm are respectively 50 and 25.

Figure 2 illustrates the evolution of the average and min-
imum ÊMSE with respect to the number of cost function
evaluations (one generation of the genetic algorithm cor-
responds to 50 evaluations, i.e. the population size). The
average and minimum ÊMSE decrease over generations until
reaching quasi-convergence. As the genetic algorithm has
reached a quasi-convergence state, most of the individuals
are identical, which shows good convergence behaviour. The
set of measurement times returned by the genetic algorithm
is denotedMGA.
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Fig. 3. Comparison of true value z(t) with the values ẑM(t)
filtered by the regular particle filter (RPF) and the optimal in-
termittent particle filter (IPF) over a single draw. The relative
gain on the complete sequence is g = 28.3%. Optimal mea-
surement timesMGA are indicated with red stars (*) and reg-
ularly spaced measurement times MREG are indicated with
blue plus (+). Results simulated from model (8)-(11).

In addition, the genetic algorithm is compared to a random
trial optimization method. It samples measurement times ran-
domly and evaluates their corresponding costs. Figure 2 in-
dicates the average and minimum costs of the random trials
with respect to the number of cost function evaluations, i.e.
the number of trials. One can observe that for a same compu-
tational cost, i.e. a same number of cost function evaluations,
our genetic algorithm significantly outperforms the random
trial optimizer.

Now that the genetic algorithm performance has been
demonstrated, our optimal intermittent particle filter (IPF)
method is compared with a regular particle filter (RPF). It
is a particle filter with regularly spaced measurement times,
defined by

MREG :=

{
Round

[
kT

N − 1

]∣∣∣∣ k = 0, . . . , N − 1

}
, (12)

where Round[·] is the rounding operator.
For a given measurement times set M, one defines the

random variable MSE[M] := 1
T+1

∑T
t=0 ‖z(t) − ẑM(t)‖2.

With this notation, one can define the relative gain, g :=
MSE[MREG]−MSE[MGA]

MSE[MREG]
. This relative gain is positive when our

IPF method outperforms the RPF.
Figure 3 compares the estimates produced by RPF and

IPF to the exact z(t) for one particular realization. Optimal
measurement timesMGA and regularly spaced measurement
timesMREG are indicated with red stars (*) and blue plus (+),
respectively. One can observe better filtering performances
using IPF. Quantitatively, the relative gain obtained using IPF

Fig. 4. Histogram of the relative gain g =
MSE[MREG]−MSE[MGA]

MSE[MREG]
. It has been obtained by running

both the regular particle filter and the intermittent particle
filter on the same 100, 000 draws. The vertical red line
corresponds to a null gain. The average is 27.7% and g is
positive in 87.5% of the cases.

instead of RPF is g = 28.3%. Due to the nonlinearities of the
problem, the obtained measurement times can not be easily
interpreted.

The histogram presented in figure 4 approximates the
probability density function of the relative gain g. It is ob-
tained by running on 100,000 draws both the IPF and the RPF
and computing the corresponding gain g. The mean relative
gain is 27.7% and in 87.5% of the cases, our IPF method
outperformed the RPF.

4. CONCLUSION

The problem of selecting optimal measurement times for
particle filtering over a finite time horizon was presented.
Then, an algorithm nesting a genetic algorithm, a Monte
Carlo method and a particle filter was proposed to find these
optimal measurement times.

Firstly, a numerical example demonstrated that our ge-
netic algorithm significantly outperforms a random trial opti-
miser. Then, we demonstrated that in comparison to regularly
spaced measurements, the optimal choice of intermittent mea-
surement times led to better filtering performance in 87.5% of
the cases. On average, the relative gain was 27.7%.

Further work will consider selecting the measurement
times online instead of fixing them a priori: after mea-
surements have been acquired, one can recompute the next
optimal measurement times, thereby incorporating all the
then-available information. Extensions to continuous-time
systems with discrete measurements will also be investigated.
Finally, robustness analyses will be performed to determine



how model uncertainties affect the performance of the pro-
posed method, for situations in which the dynamics of the
system are only approximately known.

Overall, our results demonstrate the added value of a pri-
ori selecting measurement times based on system dynamics
for the optimal estimation of a state from limited measure-
ments.
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