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Abstract

Particle filter is a powerful algorithm to track the state of discrete dynamic systems
from noisy measurements. Under certain circumstances, the number of measure-
ments has to be restricted. In this case, one is interested in finding the optimal
measurement time set for particle filtering, either apriori, i.e. before any mea-
surement acquisition, or online, i.e. as the measurements are acquired. These
problems are referred to respectively as the apriori problem and the online problem
and arise for instance, in the domain of mobile tumor tracking based on X-ray
images, where X-ray acquisitions have to be made in a parsimonious way to limit
patients’ exposure to harmful radiations. This work proposes to address these two
problems by designing an algorithm that finds near-optimal measurement time sets.
The developed algorithm is based on the nesting of a genetic algorithm, a Monte
Carlo algorithm, and a particle filter. An application in mobile tumor tracking
is presented and the performance of the method is measured on a simplified lung
tumor model. In comparison with measurements performed at regular time inter-
vals, the measurement time set solving the apriori problem reduces the expected
mean squared tracking error by 37.5%. The expected tracking performance is
improved by 39.8% using the measurement time set solving the online problem
with a significantly smaller computational budget.
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time setM
PF [{yt}t∈M] particle filter using the measurement time setM
npart number of particles used by the particle filter
OPF complexity of the particle filter algorithm
MSE(M),mse(M) mean squared tracking error using the measure-

ment time setM and its realization
EMSE[M] expected mean squared tracking error using the

measurement time setM
ndraws number of draws used by the expected mean

squared tracking estimator
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Chapter 1

Introduction

Particle filter algorithm has shown its ability to track the state of discrete dynamic
systems from noisy measurements [1] and has been used for several real-world
problems [2], among others, in computer vision [3, 4, 5], positioning and navigation
[6, 7], chemistry [8, 9], mechanics [10], robotics [11], and medicine [12]. Under
some circumstances, due to energy consumption, economical constraints or health
hazards, the measurements have to be performed in a parsimonious manner. This
is the case for mobile tumor tracking based on X-ray images, as the number of
X-ray acquisitions has to be constrained to limit patients’ exposure to undesirable
irradiation [13]. Under such constraints, one has a measurement budget and wants
to find the optimal moments to measure the system. The optimal moments are
defined as the measurement times that minimize the expected value of the mean
squared tracking error. Their computation can be performed either apriori, i.e. be-
fore any measurement acquisition, or online, i.e. as the measurements are acquired.
These problems are referred to respectively as the apriori problem and the online
problem.
The problem of state tracking under the constraint of sparse measurements have
been studied in both linear [14, 15, 16, 17] and the nonlinear case [18, 19, 20, 21, 22]
with the use of the particle filter framework. However, in these works, the missing
measurements occur randomly. The choice of optimal measurement times, as a
parameter to be optimized, has been studied in the particular case of linear systems
subject to Gaussian noise processes, using the Kalman filtering framework, in both
discrete [23] and continuous-time [24, 25] settings.
The more general formulations have received little attention in the literature. An-
toine Aspeel, Raphaël Jungers, Benoît Macq, and I addressed the problem of
providing optimal measurement times solving the apriori problem by proposing a
method nesting a genetic algorithm, a Monte Carlo algorithm, and particle filter.
These results are to be presented at the IEEE International Conference on Image
Processing 2020 Conference Proceedings and IEEE Xplore ®.

1



CHAPTER 1. INTRODUCTION 2

Contribution. The main contributions in this work are (i) to propose an efficient
algorithm to solve the problem of finding near-optimal measurement times for
particle filtering over a finite time horizon, both apriori and online, and (ii) to
show the added value of selecting measurement times for particle filtering.

Structure of the report. This report is organized as follows: chapter 2 intro-
duces the reader to the theory behind the tracking of stochastic dynamic systems,
chapter 3 presents the main contribution of this work, an algorithm that finds
near-optimal measurement time sets, chapter 4 evaluates the method on a simplified
lung tumor model, and finally chapter 5 analyzes the results obtained and discusses
ways of tailoring the method to mobile tumor tracking, possible improvements and
perspectives.

A Matlab (MathWorks, Natick, Massachusetts, USA) implementation of all
the presented algorithms and the code that generate all figures are available on
GitHub at
github.com/AmauryGouverneur/Optimal_Measurement_Times_For_
Particle_Filtering.

https://github.com/AmauryGouverneur/Optimal_Measurement_Times_For_Particle_Filtering
https://github.com/AmauryGouverneur/Optimal_Measurement_Times_For_Particle_Filtering


Chapter 2

Theoretical background

This chapter aims at providing the reader with a general understanding of stochastic
dynamic systems and their tracking. Section 2.1 is a reminder about fundamental
probability concepts that are at the core of the methods later developed. The
Monte Carlo algorithm and its properties are presented in section 2.2. Section 2.3
gives a formal definition to the tracking problem and the "best estimate". Finally,
section 2.4 presents the particle filter algorithm by developing the sequential Monte
Carlo methods. The theory presented in this chapter is inspired from the excellent
course "Computer Intensive Methods in Mathematical Statistics" given by professor
Jimmy Olsson at KTH Royal Institute of Technology [26] and from the reference
book of the course [27].

2.1 Some fundamental concepts of probability
Before explaining the Monte Carlo method and the particle filter algorithm, some
fundamental concepts of probability need to be introduced, hence the following
definitions.

Definition 2.1 (probability space). A probability space contains:

• a sample space Ω, which is the set of possible outcomes ω ∈ Ω. A set AΩ of
the sample space is called a event.

• a probability measure P assigning a value in [0, 1] to each event such that:

(i) P (Ω) = 1.
(ii) P (∪i∈IAi) = ∑

i∈I P (Ai) for any countable collection (Ai)i∈I of pairwise
disjoint events.

3



CHAPTER 2. THEORETICAL BACKGROUND 4

Given a probability space (Ω, P ) a random variable X and its distribution
function can be defined.

Definition 2.2 (random variable). A random variable X is a function Ω → X,
where X is called the state space of X.

Definition 2.3 (distribution function). Given a random variable X on some
probability space (Ω, P ), the function x 7→ F (x) = P (X ≤ x) is called the
distribution function of X.

Using the previously introduced distribution function, the probability density
function, the expectation and the variance can be defined.

Definition 2.4 (probability density function). In the case where X ∈ Rd, a
function f : X 7→ R+ such that for all x = (x1, . . . , xd),

P (X ≤ x) =
∫ x1

−∞
· · ·

∫ xd

−∞
f(z)dz, (2.1)

is called the density of X. Consequently, if F is differentiable in x, f(x) =
∂x1 · · · ∂xd

F (x) for all x.

Definition 2.5 (expectation). The integral E[X] =
∫
X xf(x)dx is called the

expectation of X. The expectation of a random variable is also called the mean.
The subscript Ef can be used to make explicit that the integral is over the probability
density f(x).

Definition 2.6 (variance). The variance of a random variable X with mean µ is
defined as:

V[X] = E[|X − µ|2]. (2.2)

The probability measure, the probability density function or the expectation
allows to define the notion of independence between two random variables.

Definition 2.7 (independence). Two random variables X and Y are said to be
independent if for all events, arguments and functions ψ and φ:

P (X ∈ A, Y ∈ B) =P (X ∈ A)P (Y ∈ B), (2.3)
⇐⇒ f(x, y) =f(x)f(y), (2.4)

⇐⇒ E[φ(X)ψ(Y )] =E[φ(X)]E[ψ(Y )]. (2.5)

Two fundamental results are at the core of the Monte Carlo method: the law of
large numbers and the central limit theorem.

The law of large numbers can be stated as follows.
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Theorem 2.1 (the law of large numbers). Let X1, X2, X3, . . . be independent and
identically distributed random variables with mean µ and set SN = ∑N

i=1Xi. Then

lim
N→∞

1
N
SN = µ (with probability one). (2.6)

The central limit theorem describes the error rate between SN/N and µ for large
N and provides the rate of convergence. First one needs to define the convergence
in distribution.
Definition 2.8 (convergence in distribution). Let X and X1, , X2, X3, . . . be ran-
dom variables. Denote FN (x) = P (XN ≤ x) and F (x) = P (X ≤ x) the distribution
functions of XN and X, respectively. Let CF be the set of continuity points of F .
(XN) is said to converge in distribution to X if for all x ∈ CF ,

lim
N→∞

FN(x) = F (x) (with probability 1). (2.7)

The convergence in distribution is noted: XN
d−→ X.

The central limit theorem describes the convergence in distribution of the series
SN/N .
Theorem 2.2. Let X1, , X2, X3, . . . be independent and identically distributed
random variables with mean µ and variance σ2 and set SN = ∑N

i=1Xi. Then
√
N
( 1
N
SN − µ) d−→ N (0, σ2), (2.8)

where N (0, σ2) is the normal distribution with zero mean and variance σ2.
The probability of the random variable X can depend on another random

variable Y . In that case X and Y are said to be conditionally dependent. The
conditional distribution of X given Y is defined as follows.
Definition 2.9. Let X and Y be two random variables. The conditional distribu-
tion of Y given X is:

p(y|x) = p(x, y)∫
Y p(x, y)dy . (2.9)

It can also be referred to as the transition density from X to Y .
The Bayes’ formula provides a way to compute the conditional distribution of

X given Y from the conditional distribution of Y given X and their probability
distributions.
Definition 2.10 (Bayes’ formula). Let X and Y be two random variables and p
the probability density function. Then

p(x|y) = p(y|x)
∫
Y p(x, y)dy∫

X p(x, y)dx . (2.10)
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2.2 Overview of the Monte Carlo method
The Monte Carlo method addresses the problem of computing the expectation of a
random variable:

τ = E[ψ(X)] =
∫
X
ψ(x)f(x)dx, (2.11)

where X is a random variable taking values in X ∈ Rd, f : X → R+ is a probability
density on X, and ψ : X → R is some function, referred to as the objective function,
such that the above expectation is finite.

Let (X i)Ni=1 be independent identically distributed random variables with density
f and τN be defined as:

τN = 1
N

N∑
i=1

ψ(X i). (2.12)

Then by the law of large numbers, it comes that:

lim
N→∞

τN → E[ψ(X)]. (2.13)

This result is at the core of the basic Monte Carlo sampler algorithm. The
pseudo-code can be found at figure 2.2.

Algorithm 1 Monte Carlo algorithm
for i = 1→ N do

draw X i ∼ f
end
set τN ← 1

N

∑N
i=1 ψ(X i)

Figure 2.1: Pseudo-code for the Monte Carlo algorithm

The error of the Monte Carlo method is random. However, it is unbiased since:

τN = E[ 1
N

N∑
i=1

ψ(X i)] = 1
N

N∑
i=1

E[ψ(X i)] = τ. (2.14)

Denoting σ2(ψ) = V[ψ(X)], one can show that the variance of τN is:

V[τN ] = E[|τN − τ |2] = 1
N2

N∑
i=1

V[ψ(X i)] = 1
N
σ2(ψ), (2.15)
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implying that the convergence rate of the method is O( 1√
N

). In addition, the
central limit theorem implies that

√
N
(
τN − τ

)
d−→ N (0, σ2(ψ)). (2.16)

This provides approximate confidence bounds to the estimator τN :

Iα =
(
τN ± λα/2

σ(ψ)√
N

)
, (2.17)

where λα/2 denotes the p-quantile of the standard normal distribution. One can
say that Iα covers τ with (approximate) probability 1− α.

2.3 Tracking problem
A tracking or filtering problem is the problem of computing the "best estimate" for
the current state of a stochastic dynamic system from noisy observations.

A stochastic dynamic system describes the evolution of 3 random variables: Xt,
Yt and Zt. The variable Zt is the quantity one wants to track, to estimate. It is
related to a state variable Xt that is observed via noisy measurements Yt.

The formal definition of a stochastic dynamic system is given by:

Definition 2.11 (stochastic dynamic system). Let t = 0, . . . , T be the finite time
horizon studied. A stochastic dynamic system is defined as follows:

Xt+1|Xt ∼ qt(xt+1|xt) for t = 0, . . . , T − 1, (2.18)
Yt|Xt ∼ pt(yt|xt) for t = 0, . . . , T, (2.19)

Zt =ht(Xt) for t = 0, . . . , T, (2.20)
X0 ∼F , (2.21)

where

• Xt ∈ Rn, Yt ∈ Rm, Zt ∈ Rp are random variables,

• qt(·|·): is the transition density on Xt,

• pt(·|·) is the transition density from Xt to Yt,

• ht(·) is the objective function,

• and F is the initial distribution of Xt.
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Remark 2.1. The pair (Xt, Yt)t≥0 forms what is called a Hidden Markov model.
The "best estimate" of zt given the observations (y0, . . . , yt), denoted y0:t, is

computed as follows.

Definition 2.12 ("best estimate"). The "best estimate" of zt is defined as:

ẑt = E[ht(Xt)|y0:t] =
∫
Xt

ht(xt)ft(xt|y0:t)dxt, (2.22)

where ft is the transition density from Yt to Xt. Computing ẑt is referred to as the
filtering problem.

Remark 2.2. An analytic expression of this quantity is, however, only available for
a relatively small and restrictive choice of systems and measurements model, the
most important being the case of linear systems subject to Gaussian noise.

The transition density from Y to X is unknown and in most cases intractable
(c.f. remark 2.2). However, the Bayes’ formula provides a way to compute it up to
an unknown constant:

ft(xt|y0:t) = ft(xt, y0:t)
pt(y0:t)

(2.23)

Indeed, for a given y0:t, p(y0:t) is a constant. It is referred to as the normalizing
constant, ct. With this notation, p(xt|y0:t) can be written as:

ft(xt|y0:t) = φt(xt)
ct

. (2.24)

where φt is a function of only xt for a given y0:t. It can be showed that

φt(xt) = F (x0)p0(y0|x0)
t∏

k=1
pk(yk|xk)qk(xk|xk−1). (2.25)

2.4 Sequential Monte Carlo method
The goal of a Sequential Monte Carlo method is to produce a sequence ofN weighted
samples

(
X i
t , ωt(X i

t)
)i=1,...,N

t≥0
representing the target distribution ft(xt|y0:t).

Each draw X i
t = (X i

0, X
i
1, . . . , X

i
t) is called a particle and ωit = ωt(X i

t) is its
associated weight. The total weight of the particles Ωt is defined as Ωt = ∑N

i=1 ω
i
t.

Assuming one had generated particles (X i
t) according to the transition density

gt(xt+1|xt), then, if one computes the weight of the particles according to ωt(xt) =
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φt(xt)
gt(xt) , one can approximate zt using a Monte Carlo method on the weighted particles:

ẑt = Ef [ht(Xt)|y0:t] =
∫
Xt

ht(xt)ft(xt|y0:t)dxt

=
∫
ht(xt)φt(xt)

c
dxt∫ φt(xt)

c
dxt

(as
∫ φt(xt)

c
dxt = 1)

=
∫
ht(xt)φt(xt)

gt(xt) gt(xt)dxt∫ φt(xt)
gt(xt) gt(xt)dxt

=
∫
ht(xt)ωt(xt)gt(xt)dxt∫
ωt(xt)gt(xt)dxt

=Eg[ht(Xt)ωt(Xt)]
Eg[ωt(Xt)]

≈

1
N

∑N
i=1 ht(X i

t)ωit
1
N

∑N
i=1 ω

i
t

=
N∑
i=1

ωit
Ωt

ht(X i
t). (2.26)

2.4.1 Sequential Importance Sampling
Let gt(xt) be an instrumental distribution specified through transition densities by

gt(xt) = g0(x0)
t−1∏
k=0

gk(xk+1|Xk). (2.27)

Assuming that (X i
t)Ni=1 have been generated from gt(xt) such that

N∑
i=1

ωit
Ωt

ht(X i
t) ≈ ẑt, (2.28)

as gt+1(Xt+1) = gt(xt)gt(xt+1|xt), a draw X i
t+1 may be generated by simulating

X i
t+1 ∼ gt(xt+1|X i

t).

Consequently,
(
X i
t+1

i, ωit+1

)
can be generated by computing ωit+1 ←

φt+1(Xi
t+1)

gt+1(Xi
t+1) .
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The computation of ωit+1 can be done recursively as:

ωit+1 = φt+1(X i
t+1)

gt+1(X i
t+1)

= φt+1(X i
t+1)

φt(X i
t)gt(X i

t+1|X i
t)
φt(X i

t)
gt(Xt)

= φt+1(X i
t+1)

φt(X i
t)gt(X i

t+1|X i
t)
ωit. (2.29)

The approximation of ẑt by the sequential importance sampling is denoted
ẑSIS,N
t :

ẑSIS,N
t :=

N∑
i=1

ωit
Ωt

ht(X i
t) ≈ Ef [ht(Xt)|y0:t]. (2.30)

The pseudo-code describing the Sequential Importance Sampling is shown in
figure 2.2.

Algorithm 2 Sequential Importance Sampling algorithm
Data: {yt}t=0,...,T
Result: {ẑSIS,Nt }t=0,1,...,T
for i = 1→ N do

draw X i
0 ∼ g0(x0)

set ωi0 ←
φ0(Xi

0)
g0(Xi

0)

set ẑSIS,N
0 ← ∑N

i=1
ω0

i

N
h0(X i

0)
end
for t = 0, . . . , T − 1 do

for i = 1→ N do
draw X i

t+1 ∼ gt(xt+1|X i
t)

set ωit+1 ←
φt+1(Xi

t+1)
φt(Xi

t)gt(Xi
t+1|X

i
t)ω

i
t

set ẑSIS,N
t+1 ← ∑N

i=1
ωt+1

i

N
ht+1(X i

t+1)
end

end

Figure 2.2: Pseudo-code of the Sequential Importance Sampling algorithm

Unfortunately, due to the fact that the particle weights are generated through
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subsequent multiplications, one or few particles will end carrying almost all the
weight. This problem is called weight degeneration.

2.4.2 Sequential Importance Sampling with Resampling
A simple idea allows to avoid the weight degeneracy problem. Having at hand a
weighted sample (X i

t , ω
i
t)Ni=1 approximating a probability distribution function ft,

a uniformly weighted sample can be formed by resampling with replacement new
variables (X̃ i

t)Ni=1 form (X i
t)Ni=1 according to the weights (ωit)Ni=1.

The Sequential Importance Sampling with Resampling (SISR) estimate of ẑt is
denoted ẑSISR,N

t . It is defined by:

ẑSISR,N
t :=

N∑
i=1

ωit
Ωt

ht(X i
t). (2.31)

One can prove that the resampling does not induce bias to the estimator.

The full scheme for SISR is given by figure 2.3.
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Algorithm 3 Sequential Importance Sampling algorithm with Resampling
Data: {yt}t=0,...,T
Result: {ẑSISR,Nt }t=0,1,...,T
for i = 1→ N do

draw X i
0 ∼ g0(x0)

set ωi0 ←
φ0(Xi

0)
g0(Xi

0)

set ẑSISR,N
0 ← ∑N

i=1
ω0

i

N
h0(X i

0)
end
for t = 0, . . . , T − 1 do

for i = 1→ N do
draw with replacement (X̃ i

t)Ni=1 among (X i
t)Ni=1 according to the probabilty

(ωit/Ωt)Ni=1
draw X i

t+1 ∼ gt(xt+1|(X̃ i
t)

set ωit+1 ←
φt+1(Xi

t+1)
φt(Xi

t)gt(Xi
t+1|X

i
t)ω

i
t

set ẑSISR,N
t+1 ← ∑N

i=1
ωt+1

i

N
ht+1(X i

t+1)
end

end

Figure 2.3: Pseudo-code of the Sequential Importance Sampling with Resampling
algorithm

The convergence of the algorithm as the number of particles N tends to infinity
for t fixed has been established [28]. Using this result, one can write a central limit
theorem for the SISR estimate with N particles ẑSISR,N

t :
√
N
(
ẑSISR,N
t − ẑt

)
d−→ N (0, σ2(φ)). (2.32)

2.4.3 The particle filter
The particle filter is a possible implementation of the Sequential Importance Sam-
pling with Resampling where the particles are evolving according to the dynamic
system, that is gt(xt+1|xt) is set to q(xt+1|xt). This leads to a simplified equation
to compute the particles weight.
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Recall from equation (2.25) that

φt(xt) = F (x0)p(y0|x0)
t∏

k=1
p(yk|xk)q(xk|xk−1).

Then it comes that

φt+1(Xt+1)
φt(xt)

= p(yt+1|xt+1)q(xt+1|xt). (2.33)

Plugging this last result and gt(xt+1|xt) = q(xt+1|xt) in equation (2.29), it comes
that:

ωt+1 = φt+1(Xt+1)
φt(xt)gt(xt+1|xt)

= p(yt+1|xt+1)q(xt+1|xt)
q(xt+1|xt)

= p(yt+1|xt+1). (2.34)

The weight of the particle X i
t is simply the conditional probability of the measure-

ment given the particle.



Chapter 3

Materials and methods

This chapter is organized into six sections. In section 3.1, a stochastic dynamic
system with intermittent measurements is introduced and the filtering problem
on this system is defined. In section 3.2, the particle filter algorithm with sparse
measurements is presented. It is explained how the particle filter can deal with
intermittent measurements and provides an approximate solution to the filtering
problem. In section 3.3, the definition of the optimal measurement time set is given,
that is the set of measurements that minimizes the expected mean squared tracking
error of the filtering estimate. This quantity is intractable and an estimator of
the expected mean squared tracking error is presented in section 3.4. The apriori
problem is defined as a combinatorial optimisation problem. A natural extension
to this problem is presented in section 3.5, the online problem. The idea is to
recompute the optimal measurement time set once a measurement has been acquired.
In section 3.6, five different algorithms to solve the apriori and online problems are
presented.

3.1 Filtering problem with intermittent measure-
ments

A filtering or tracking problem with intermittent measurements is the problem of
computing the "best estimate" for the state of a stochastic dynamic system from
sparse noisy observations. A formal definition is the following.

Definition 3.1 (dynamic system with intermittent measurements). Let t =
0, . . . , T be the finite time horizon studied andM{0, . . . , T} be the set of available
measurement times of size N , i.e. |M| = N with M = {τ1, . . . , τN} such that
τi ∈ {0, . . . , T}, τi < τj, i < j.

14
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A dynamic system with intermittent measurements is defined as:

Xt+1|Xt ∼ qt(xt+1|xt) for t = 0, . . . , T − 1, (3.1)
Yt|Xt ∼ pt(yt|xt) for t ∈M, (3.2)

Zt =ht(Xt) for t = 0, . . . , T, (3.3)
X0 ∼F , (3.4)

where

• Xt ∈ Rn, Yt ∈ Rm, Zt ∈ Rp are random variables,

• qt(·|·) is the transition density on Xt,

• pt(·|·) is the transition density from Xt to Yt,

• ht(·) is the objective function,

• and F is the initial distribution of Xt.

Example 3.1. In a tumor tracking problem based on X-ray images, xt ∈ R6 can
be a state vector containing the tumor’s position and velocity in the 3-dimensional
space, yt ∈ R2 can be the 2-dimensional projection of the target and zt ∈ R3 the
position of the mass center in the 3-dimensional space.

The "best estimate" of zt given the measurements up to time t, {yτ}τ∈M,τ≤t is
defined similarly as in definition 2.12.

Definition 3.2 ("best estimate" with intermittent measurements). The "best
estimate" of zt given the measurements {yτ}τ∈M,τ≤t, is defined as:

ẑt = E[ht(Xt)|Yτ , τ ∈M, τ ≤ t] =
∫
Xt

ht(xt)ft(xt|yτ , τ ∈M, τ ≤ t)dxt, (3.5)

where ft(xt|yτ , τ ∈M, τ ≤ t) is the transition density from Yt to Xt.

The same commentary as in remark 2.2 applies: an analytic expression of this
expression is only available in particular choices of systems and measurements
model.

3.2 Particle filter tracking with intermittent mea-
surements

As explained in section 2.4, the particle filter algorithm proposes an efficient method
to compute an approximation of the "best estimate" ẑt.
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The idea is to produce npart. weighted particles to represent the target distribu-
tion ft(xt|yτ , τ ∈M, τ ≤ t). The particles are generated according to the dynamic
of the system. The dynamic model used by the particle filter will be referred to as
the tracking model.

To deal with intermittent measurements, the update of the weight of the
particles is skipped when no measurement is available, i.e. when t /∈ M, all
weights are set to 1. Indeed, no measurement at time t is equivalent to a measure-
ment at time t with infinite noise, thus leading to equal probability for each particle.

For a given tracking model and constants T , npart., the particle filter can be
interpreted as a function PF [·] of {yt}t∈M. The approximation of ẑt returned by
the particle filter is noted ẑt(M):

{yt}t∈M 7→ PF [{yt}t∈M] :={ẑt(M)}t=0,...,T . (3.6)

The full pseudo-code of the particle filter with intermittent measurements is shown
in figure 3.1.
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Algorithm 4 Particle filter with intermittent measurements
Data: {yt}t∈M, tracking model

(
pt(·|·), qt(·|·), ht(·),F

)
Result: {ẑt(M)}t=0,1,...,T
initialization:
for i = 1→ npart. do

draw X i
0 ∼ F

end
selection:
for i = 1→ npart. do
if 0 ∈M then

set ωi0 ← p0(y0|X i
0)

else
set ωi0 ← 1

end
end
set ẑ0(M)←

∑npart.
i=1 h0(Xi

0)ωi
0

Ω0

for t = 0, 1, . . . , T − 1 do
mutation:
for i = 1→ npart. do

draw with replacement (X̃ i
t)
npart.
i=1 among (X i

t)
npart.
i=1 according to the probabilty

(ωit/Ωt)npart.
i=1

draw X i
t+1 ∼ qt(xt+1|X̃ i

t)
end
selection:
for i = 1→ npart. do
if t ∈M then

set ωit+1 ← pt+1(yt+1|X i
t+1)

else
set ωit+1 ← 1

end
end
set ẑt+1(M)←

∑npart.
i=1 ht+1(Xi

t+1)ωi
t+1

Ωt+1

end

Figure 3.1: Pseudo-code describing the particle filter algorithm with intermittent
measurements. Essentially, a particle filter algorithm alternates between a mutation
step used to estimate the state at the next time step from the estimate at the current
step; and a selection step that updates the state estimation to incorporate the
information acquired in the last measurement. To deal with intermittent measure-
ments, the update of the weight of the particles is skipped when no measurement
is available, i.e. when t /∈M, all weights are set to 1. The above pseudo-code is an
adaptation to intermittent measurements of the sampling importance resampling
particle filter (see Algorithm 4 in [1]).
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3.3 An optimality criteria for measurement time
sets

As explained in section 3.2, the particle filter estimate ẑt(M) depends on the
measurement time setM.

The error on the particle filter estimate is random (see section 2.4), thus the
mean squared tracking error of the set of measurementM is a random variable.

Definition 3.3 (mean squared tracking error). For a given measurement time set
M, one defines the random variable

MSE(M) := 1
T + 1

T∑
t=0
‖Zt − Ẑt(M)‖2. (3.7)

The problem to address is to find the set of N measurement times that minimizes
the expected filtering mean squared tracking error over the finite time horizon
t = 0, . . . , T . This set is referred to as the optimal measurement time set.

Definition 3.4 (optimal measurement time set). The optimal measurement time
set is the setM that minimizes the expected mean squared tracking error:

min
M{0,...,T}

E [MSE(M)] :=EMSE[M]

subject to |M| = N (3.8)

where ẑt(M) is obtained from the particle filter and ‖ · ‖ is the Euclidean norm.
As MSE(M) depends on the random variables {Zt}t=0,1,...,T and {Ẑt(M)}t=0,1,...,T ,
the expectation is on these random variables.

Remark 3.1. It has to be noted that || · || could be any other norm.

3.4 The expected mean squared tracking error
estimator and the apriori problem

To find the optimal measurement time set (3.8), one has to compute the expectation,
EMSE[M] which has, in general, no analytical expression.

The Monte Carlo algorithm (see section 2.2) provides a way to approximate
this expectation.



CHAPTER 3. MATERIALS AND METHODS 19

The main idea is to generate ndraws realizations for {zt}t=0,1,...,T and {ẑt(M)}t=0,1,...,T
according to their probability distribution functions, and average their mean squared
tracking error. The dynamic model used by the Monte Carlo to generate {zt}t=0,1,...,T
and {ẑt(M)}t=0,1,...,T is referred to as the training model.

The probability density function of {ẑt(M)}t=0,1,...,T is not given analytically
but it is still possible to draw values according to it.
Indeed, for a given measurement time setM, one can generate {xt}t=0,...,T , {yt}t∈M
and {zt}t=0,...,T .
For each simulated sequence of measurements {yt}t∈M, the particle filter computes
{ẑt(M)}t=0,...,T and thus one can compute the mean squared tracking error of the
draw {zt, ẑt(M)}t=0,...,T :

mse(M) = 1
T + 1

T∑
t=0
‖zt − ẑt(M)‖2. (3.9)

The nesting of the Monte Carlo algorithm and the particle filter is represented in
figure 3.2. The complexity of the Monte Carlo estimation is

O(ÊMSE[M]) = O
(
ndraws ·OPF

)
, (3.10)

where OPF is the particle filter’s complexity.
The Monte Carlo estimator of the expectation EMSE[M], denoted by ÊMSE[·],

is defined as follows.

Definition 3.5 (Monte Carlo estimator of the expected mean squared tracking
error).

ÊMSE[M] := 1
ndraws

ndraws∑
k=1

msek(M) ≈ EMSE[M], (3.11)

where msek(M) are drawn according figure 3.2 and the dynamic model is subject
to equations 3.4 to 3.1.

With this notation, the problem of finding the optimal measurement time set is
approximately equivalent to finding the setM that minimizes ÊMSE[M]. Solving
this problem before any measurement acquisition is referred to as the apriori
problem:

Definition 3.6 (apriori problem). The apriori problem is define as finding the set
M that minimizes the approximate expected mean squared tracking error before
any measurement acquisition:

min
M{0,...,T}

ÊMSE[M] subject to |M| = N, (3.12)

where the dynamic model is subject to equations 3.4 to 3.1.
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M

training model

tracking model

Draw

{ykt }
k=1,...,ndraws
t∈M {xkt }

k=1,...,ndraws
t=0,...,T

ht(·)PF

{ẑkt (M)}k=1,...,ndraws
t=0,...,T

MSE

{msek(M)}k=1,...,ndraws

{zkt }
k=1,...,ndraws
t=0,...,T

Average

ÊMSE[M]

Figure 3.2: Representation of the expected mean squared tracking error estimator
M 7→ ÊMSE[M]. The outputs generated by the "Draw" block are drawn according
to the training model. The "ht(·)" block uses equation (3.3) to compute zkt that
corresponds to the xkt . The "PF" block represents a particle filter that computes
an estimate ẑkt (M) of zkt from previous intermittent measurements {ykt }t∈M. The
model used by the particle filter is referred to as the tracking model. The "MSE"
block computes the mean squared of the difference between the inputs. The
"Average" block computes ÊMSE[M] according to equation (3.11).

3.5 Adaptation to online measurements acquisi-
tion

A natural extension of the apriori problem (definition 3.6) is to perform the compu-
tation of the optimal measurement time setM = {τ1, . . . , τN} in an online manner.
The idea is to recompute the optimal measurement time(s) after measurements
have been acquired. The full problem is to solve the apriori problem N times over
smaller and smaller time horizons. The first apriori problem is solved over a time
horizon 0 to T , the second will be over a time horizon 0 to T − τ1 and so on. This
problem is referred to as the online problem.

After measurements {τ1, . . . , τj} have been acquired, the dynamic system mod-
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eled by 3.1 to 3.4 becomes:

Xt+1|Xt ∼ qt(xt+1|xt)dxt+1 for t = τj, . . . , T − 1, (3.13)
Yt|Xt ∼ pt(yt|xt)dyt for t ∈M, (3.14)

Zt =ht(Xt) for t = τj, . . . , T, (3.15)
Xτj
∼ ft(xτj

|yτ1 , . . . , yτj
), (3.16)

where f0 = F .

After acquiring {τ1, . . . , τj}, the apriori problem is to find a set M such that:

min
M{τj+1,...,T}

ÊMSE[M] subject to |M| = N − j, (3.17)

where the dynamic model is subject to equations 3.13) to (3.16).

A notable difference between equations (3.4) and (3.16) is that the initial dis-
tribution ft(xτ |yτ1, . . . , yτj) is not known anymore. Being able to draw according
to this distribution is a requirement to run the particle filter on this model. As
explained in section 2.4, the particle filter is an efficient method to approximate a
probability density function and, in the same way as described in section 2.4, it
can be used to approach the target distribution. Referring at figure 3.1, one can
use the particle filter algorithm on the measurements {yt}t∈{τ1,...,τj} to generate the
resampled particles (X̃ i

τj)
npart.
i=1 representing the target ft(xτj|yτ1, . . . , yτj). These

particles can be used as initial draws to run the particle filter on the next measure-
ment times, t ≥ τj.

The online problem can be defined as the following problem.

Definition 3.7 (online problem). Let τ0 = −1. The online problem is defined as
solving the following problem iteratively for j = 0, . . . , N :

• Find a solutionM = {τj+1, . . . , τN} to

min
M{τj+1,...,T}

ÊMSE[M] subject to |M| = N−j and equations (3.13) to (3.16),
(3.18)

• Acquire measurement yτj+1 .

Defining {yt}t=0,...,T as the set of accessible measurements, one can interpret
the online computation of optimal measurement as a function of {yt}t=0,...,T . The
set of online acquired measurement is denoted M(y) as it is a function of the
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measurements.

Let Oapriori(T ) be the complexity of the apriori problem over a time horizon T
and Oonline be the complexity of the online problem. As Oapriori(T ) is a decreasing
function, it comes that:

Oonline =Oapriori(T ) +
N−1∑
i=1

Oapriori(T − τi)

≤N ·Oapriori(T ). (3.19)

3.6 Five combinatorial optimization algorithms
to solve the apriori problem

Solving the apriori problem (definition 3.6) or the online problem (definition 3.7)
requires to solve a combinatorial optimization problem. It corresponds to finding
the setM{0, . . . , T} of cardinality N that minimizes ÊMSE[M].
An exhaustive search would require to test all admissible M which represents

(T+1)!
(T+1−N)!N ! possibilities. It is computationally intractable for large N and T .

In this section, five heuristic optimization algorithms to find efficiently approxi-
mate solution to the apriori problem are presented, two direct methods (Greedy
Forward and Greedy Backward) and three iterative methods (Simulated Annealing,
Genetic Algorithm and Random Trial). In the following a feasible solution Mi

of the optimization problem is referred to as an individual and a set of several
individuals is called a population. The performance of these algorithms to solve
the apriori and online problem will be compared in chapter 4.

3.6.1 The Greedy Forward algorithm
The greedy forward algorithm begins with an empty measurement time set. Se-
quentially, it adds the measurement times one at a time such that, at each iteration,
the added measurement time minimizes the cost. It stops when the set contains N
measurement times. [29]

The algorithm can be summarized as follows:

1. Initialization: The elite individual M∗ is initialized with the empty set:
M∗ = ∅.
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2. Forward exploration: The population with all the neighboring bigger
measurements set is created: Mi =M∗ ∪ {i}, ∀i ∈ {0, . . . , T} \M∗.

3. Evaluation: For each individual in the population, the cost ÊMSE[Mi] is
evaluated according to the objective function of the optimization problem.

4. Selection: The individualMj with the lowest cost ÊMSE[Mj] ≤ ÊMSE[Mi]
becomes the new elite individual: M∗ =Mj.

5. Repeat: Come back to step 2 until the measurement budget is reached:
|M∗| = N . The individualM∗ is returned. The returned measurement time
set is denotedMGF.

Selecting the ith measurement time requires T + 2− i cost function evaluations.
Consequently, this algorithm stops after n. calls GF cost function evaluations where
n. calls GF is

n. calls GF :=
N−1∑
i=0

(T + 1− i) = N(T + 2)−N(N + 1)/2. (3.20)

The complexity of the implemented GF optimization is

OGF := O
(

(n. calls GF) ·O(ÊMSE[M])
)
. (3.21)

The forward exploration idea is illustrated on figure 3.3.
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Figure 3.3: Representation of the state-space exploration in a greedy forward
approach. The greedy forward algorithm starts from the empty set, evaluates
the performance of the neighboring bigger states, selects the one with the best
performance and iterates.

3.6.2 The Greedy Backward algorithm
The greedy backward algorithm works in the opposite direction than the greedy
forward algorithm. It begins with a complete measurement time set. Sequentially,
it takes out the measurement times one at a time such that, at each iteration, the
dropped measurement time minimizes the cost. It stops when the set contains N
measurement times [29].

The algorithm can be summarized as follows:

1. Initialization: The elite individualM∗ is initialized with the full set:M∗ =
{0, . . . , T}.

2. Backward exploration: The population with all the neighboring smaller
measurements set is created: Mi =M∗ \ {i}, ∀i ∈M∗.

3. Evaluation: For each individual in the population, the cost ÊMSE[Mi] is
evaluated according to the objective function of the optimization problem.

4. Selection: The individualMj with the lowest cost ÊMSE[Mj] ≤ ÊMSE[Mi]
becomes the new elite individual: M∗ =Mj.
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5. Repeat: Come back to step 2 until the measurement budget is reached:
|M∗| = N . The individualM∗ is returned. The returned measurement time
set is denotedMGB.

Removing the ith measurement time requires T + 2− i cost function evaluation.
Consequently, this algorithm stops after n. calls GB cost function evaluations where
n. calls GB is

n. calls GB :=
T+1∑
i=N+1

(T + 1− i) = (T + 1)(T + 2)−N(N + 1)
2 . (3.22)

The complexity of the implemented GF optimization is

OGB := O
(

(n. calls GB) ·O(ÊMSE[M])
)
. (3.23)

The backward exploration idea is illustrated on figure 3.4.

Figure 3.4: Representation of the state-space exploration in a greedy backward
approach. The greedy backward algorithm starts from the full set, evaluates
the performance of the neighboring smaller states, selects the one with the best
performance and iterates.

3.6.3 The Simulated Annealing algorithm
Simulated annealing is one of the most commonly used algorithms to solve the
problem of "black-box optimization" [30]. It works by extending a local search with
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an efficient Metropolis acceptance criterion. The name simulated annealing comes
from the analogy of materials physical annealing. This process brings a solid to high
temperature, where its particles are free to move randomly and explore different
states, before cooling it down slowly enough to reach a solid-state of minimum
energy. The same idea is used with simulated annealing where the state-space
points represent the possible states of the solid and the function to be minimized
represents the energy of the solid.

The algorithm can be summarized as follows:

1. Initialization: An initial populationMi is uniformly sampled on the ad-
missible set of problem. An initial temperature T ° is settled.

2. Mutation: A mutated population individual of individuals M̃i is created
from a copy of the original population. For each individual M̃i, the measure-
ment times are replaced by random ones according to a given probability.
These random draws are done avoiding duplication, i.e., individual with
repeated measurement times.

3. Evaluation: For each in the original population, the cost ÊMSE[Mi] is
evaluated according to the objective function of the problem. Similarly,
the cost is evaluated for the individuals of the mutated population, it gives
ÊMSE[M̃i].

4. Selection: If ÊMSE[M̃i] < ÊMSE[Mi], then the mutated individual M∗
i

becomes the newMi. Otherwise,M∗
i becomes the newMi with probability

exp((ÊMSE[Mi]− ÊMSE[M̃i])/T °).

5. Repeat: Reduce the temperature as T ° := K · T °. Come back to step 2
until a stopping criterion is satisfied. The returned measurement time set is
denotedMSA.

One pass of steps 2 to 5 is called an iteration. The initial temperature T ° is set to
10 and the factor K is set to 0.8. With this value, the initial acceptance rate is
close to 1. The stopping criterion used is on the number of generations limited to
(max. iter.).

The complexity of the implemented SA optimization is

OSA := O
(

2 · (max. iter.) · (pop. size SA) ·O(ÊMSE[M])
)
, (3.24)

where (pop. size SA) is the size of the population.
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3.6.4 The Genetic algorithm
In the GA nomenclature, the measurement times of an individual t ∈Mi are called
its genes.

The GA [31] implements the following steps.

1. Initialization: An initial population of nindiv individuals is uniformly sam-
pled on the admissible set.

2. Evaluation: For each individual in the population, the cost ÊMSE[Mi] is
evaluated according to the objective function of the optimization problem.

3. Selection: Individuals with low costs are preferably selected according to
stochastic universal sampling [31].

4. Crossover: Selected individuals are mixed to produce new individuals called
the offspring. This reconstitutes a complete population. The Count preserving
crossover operator [32, 33] is used to ensure that the number of measurements
stays N . Pairs of individuals are randomly formed. For each pair (M1,M2),
genes are picked randomly in the setsM1\M2 andM2\M1 (each gene has
the same probability to be selected). The picked genes are exchanged, i.e.,
they pass from one individual to another.

5. Mutation: Each gene of each individual is replaced by a random gene accord-
ing to a given probability. These random draws are done avoiding duplication,
i.e., individual with repeated measurement times τi 6= τj ∀τi, τj ∈M with
i 6= j.

6. Repeat: Come back to step 2 until a stopping criterion is satisfied. The
returned measurement time set is denotedMGA.

One pass of steps 2 to 5 is called a generation.
The implementation of the genetic algorithm uses stochastic universal sampling

and sigma scaling with unitary sigma coefficient [31]. The crossover probability is
1 and the mutation probability per gene is 0.003. The stopping criterion used is on
the number of generations limited to (max. gen.).

The complexity of the implemented GA optimization is

OGA := O
(

(max. gen.) · (pop. size GA) ·O(ÊMSE[M])
)
, (3.25)

where (pop. size GA) is the size of the population.
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3.6.5 The Random Trial algorithm
The random trial algorithm samples measurement time sets uniformly at random
and evaluates their corresponding costs. The measurement time set with the
minimum cost is returned.

The algorithm can be summarized as follows:

1. Initialization: a measurement time set M∗ is uniformly sampled on the
admissible set. Its cost ÊMSE[M∗] is evaluated.

2. Random trial: a measurement time setMi is uniformly sampled on the
admissible set.

3. Evaluation: the cost ÊMSE[Mi] is evaluated according to the objective
function of the problem.

4. Selection: If ÊMSE[Mi] < ÊMSE[M∗], then the newly generated individual
Mi becomes the newM∗.

5. Repeat: Come back to step 2 until reaching a sample budget. The individual
M∗ is returned. The returned measurement time set is denotedMRT.

The complexity of the implemented RT optimization is

ORT := O
(

(sample. size.) ·O(ÊMSE[M])
)
. (3.26)

3.7 A note on the training model and the robust-
ness of the optimal measurement time set

The expected mean squared tracking error estimator can be interpreted as a func-
tion of the measurement time setM with 2 parameters: the tracking model and
the training model (see figure 3.5).
These models are to be distinguished, the reason being that the robustness of the
estimator, that is its property of being asymptotically unbiased, only depends on
the training model as this model is the one used to generate the draws in the Monte
Carlo method (see section 2.2). The robustness of the estimator is crucial to ensure
the quality of the returned measurement time setM to lower the expected mean
squared tracking error.

In complex practical application, models are approximations of the true dynamic
state. If one has access to empirical data, it is, however, possible to circumvent this
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problem. Indeed, one can generate the draws of the Monte Carlo method according
to the empirical distribution.

The empirical distribution P̂∗ associated with the data y = (y1, y2, . . . , yn) gives
equal weight (1/n) to each of the yi. Formally it is defined a follows.

Definition 3.8 (empirical distribution function). The empirical distribution func-
tion associated with the data y is defined by

F̂n(z) = P̂∗(Z ≤ z)

= 1
n

n∑
i=1

1{yi≤z} = fraction of yi’s that are less than z. (3.27)

Using the law of large numbers, one can show that the empirical distribution
converges in distribution to the true distribution function of the data. This last
result ensures that using empirical distribution as training model to generate the
draws of the Monte Carlo estimator would make the estimator asymptotically
unbiased.

M

training modeltracking model ÊMSE estimator

ÊMSE[M]

Figure 3.5: The expected mean squared tracking error estimator can be interpreted
as a function of the measurement time set M with 2 parameters: the tracking
model and the training model. These models are to be distinguished, the reason
being that the robustness of the estimator only depends on the training model.



Chapter 4

Results

This chapter is organized into four sections. In section 4.1 the method to evaluate
the tracking performance is described. This is done by introducing four performance
indicators (subsection 4.1.1) and describing the method used to estimate these
indicators (subsection 4.1.2). To compare the measurement time sets returned
the different optimization algorithms, one has to allocate the same computational
budget to each of the algorithms. This is done by setting the algorithms’ parameters
such that the complexity of the algorithms is equivalent (subsection 4.1.3). The
parameters to compute the performance indicators are given for the measurements
sets corresponding solving the apriori and online problems (subsection 4.1.4).
In section 4.2, the dynamic model used for the tests is given. This model is
an approximation of the dynamics of lung tumors motion. In section 4.3, the
performance indicators of the measurement time sets solving the apriori problem
are compared for the five different optimization algorithms. In section 4.4, the
performance indicators of the measurement time sets solving the online problem
are compared with the performance indicators of a measurement time set solving
the apriori problem.

4.1 Evaluation of the performance of a measure-
ment time set M

4.1.1 Performance of a measurement time set and statis-
tics on the relative gain, the performance indicators

The performance of the measurement time sets is compared to the performance of
the tracking using regularly spaced measurement times.

The formal definition of the regularly spaced measurement times is given by:

30
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Definition 4.1 (regularly spaced measurement times).

MREG :=
{
Round

[
kT

N − 1

]∣∣∣∣∣ k = 0, . . . , N − 1
}
, (4.1)

where Round[·] is the rounding operator.

The performance of a measurement time setM is defined as the gain on the
expected mean squared tracking error.

Definition 4.2 (gain on EMSE). The gain on the expected mean squared tracking
error is defined as:

gain on EMSE := EMSE[MREG]− EMSE[M]
EMSE[MREG] (4.2)

Using the random variable MSE(M) (definition 3.3), one can define the relative
gain as the gain in mean squared tracking error between a measurement time set
M and the regularly spaced measurement times over the same random variables
{Xt}t=0,...,T , {Yt}t=0,...,T .

Definition 4.3 (relative gain). The relative gain is the random variable

G(M) := MSE(MREG)−MSE(M)
MSE(MREG) , (4.3)

where the mean squared tracking error between the measurement time setsM and
theMREG is over the same random variables {Xt}t=0,...,T , {Yt}t=0,...,T .

One defines the three following statistics on the relative gain:

expected gain :=E[G(M)] = E
[MSE(MREG)−MSE(M)

MSE(MREG)
]

(4.4)

median gain :=mG(M) such that
P(G(M) ≤ mG(M)) = 0.5
P(G(M) ≥ mG(M)) = 0.5

(4.5)

prob. of positive gain :=P(G(M) ≥ 0) (4.6)

These statistics on the relative gain together with the gain on EMSE are referred
to as the performance indicators.
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4.1.2 Estimation of the performance indicators
To compute the gain on EMSE and the expected gain, the expectations EMSE[M],
EMSE[MREG], and E[G(M)] are estimated using the Monte Carlo method.
The values of EMSE[M] and EMSE[MREG] are computed according to figure 3.2.
One draw g(M) is computed according to figure 4.1. The dynamic model used
to generate these draws is referred to as the testing model and the estimation is
performed with ntests draws. The particle filter used to compute {ẑt(M)}t=0,...,T for
each of these draws is run with npart. tests particles. The margin error of a Monte
Carlo value is estimated using the procedure described in subsection 2.2. The
confidence rate about the margins is (1− α).

The performance indicators median gain and prob. of positive gain are es-
timated by respectively the median and the fraction of positive gains over the
same ntests draws. The margin error is estimated over nbootstrap sets using basic
bootstrap confidence bounds described in appendix A.2. The confidence rate about
the margin is (1− α).

The parameters ntests, npart. tests, nbootstrap and α are referred to as the test
parameters.
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testing model

tracking modeltracking model

Draw

{yt}t=0,...,T

M

{yt}t∈M

PF

{ẑt(M)}t=0,...,T

MSE

mse(M)

{yt}t=0,...,T

MREG

{yt}t∈MREG

{xt}t=0,...,T

ht(·)

PF{zt}t=0,...,T

{ẑt(MREG)}t=0,...,T

MSE

mse(MREG)

gain

g(M)

Figure 4.1: Representation of the generation of one draw g(M). The outputs
generated by the "Draw" block are drawn according to the testing model. The
"ht(·)" block uses equation (3.3) to compute zkt that corresponds to the xkt . The
"PF" block represents a particle filter that computes an estimate ẑkt (M) of zkt from
previous intermittent measurements {ykt }t∈M. The model used by the particle
filter is referred to as the tracking model. The "MSE" block computes the mean
squared of the difference between the inputs. Note that mse(M) and mse(MREG)
are computed over the same draw {xt}t=0,...,T , {yt}t=0,...,T and {zt}t=0,...,T The gain
g(M) is then computed according to equation (4.3).

.

4.1.3 Equivalent computational budget between the differ-
ent optimization algorithms

To compare the performance of the measurement time sets returned by the different
optimization algorithms, one needs to allocate the same computational budget to
each algorithm. This can be achieved by setting the parameters of each algorithm
such that their number of calls to the particle filter algorithm is equivalent. The
parameters of GA are used as a reference and are referred to as the optimization
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parameters.

The iterative methods (SA, GA, RT) are run with expected MSE estimator,
ÊMSE[M] using the same number of draws, ndraws. One evaluation of ÊMSE[M] for
these iterative algorithms is referred to as one cost function evaluation.

Using equations (3.24), (3.25) and (3.26), the number of calls to the particle
filter of the iterative optimization algorithm can be written as:

n. calls PF by SA =2 · (max. iter.) · (pop. size SA) · ndraws, (4.7)
n. calls PF by GA =(max. gen.) · (pop. size GA) · ndraws, (4.8)
n. calls PF by RT =(sample. size.) · ndraws. (4.9)

The parameters of the SA and RT algorithms are set such that their number of
calls to the particle filter is equivalent to the GA algorithm. This can be achieved
by:

(sample. size.) =(max. gen.) · (pop. size GA) (4.10)
(max. iter.) =(max. gen.) (4.11)

(pop. size SA) =Round[ (pop. size GA)
2 ] (4.12)

Using equations (3.10), (3.21) and (3.23), the number of calls to the particle
filter of the direct methods can be written as:

n. calls PF by GF =(n. calls GF) · ndraws GF, (4.13)
n. calls PF by GB =(n. calls GB) · ndraws GB. (4.14)

Arbitrarily, the number of particles, npart. is the same as for the iterative
methods. Let ndraws refer to the number of draws of the iterative methods and
recall that the value of (n. calls GF) and (n. calls GB) are constants. To get the
same number of calls to the particles filter as the GA algorithm, the values of
parameters ndraw GF and ndraw GB have to be:

ndraw GF =ndraws · Round[ (max. gen.) · (pop. size GA)
(n. calls GF) ], (4.15)

ndraw GB =ndraws · Round[ (max. gen.) · (pop. size GA)
(n. calls GB) ]. (4.16)
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4.1.4 Apriori and online comparison
The performance of the five optimization algorithms to solve the apriori problem
will be compared. The comparison is called the apriori comparison.

The best performing optimization algorithm will then be used to solve the
online problem. The performance of the measurement time set solving the online
problem will be compared to the one solving the apriori problem. This comparison
is called the online comparison.
As the measurement time set returned by the online algorithm is a function of the
measurements, the algorithm has to be run on each test. This increases the compu-
tation time significantly. Taking this into consideration, the test and optimization
parameters for the online comparison have been set.

The values of the model parameters, test parameters and optimization pa-
rameters are given in table 4.1. Note that the number of particles used for the
optimization is different than the number of particles for the filtering.

parameters apriori comparison online comparison

model T 30 30
N 11 11

optimization

n. draws 1,000 200
n. part. 200 100
pop. size 100 30
max. gen. 25 15

test

n. tests 100,000 500
n. part. tests 1,000 1,000
n. bootstrap 1,000 1,000
alpha 0.05 0.05

Table 4.1: Values of the model parameters, test parameters and optimization pa-
rameters for the apriori and online comparison. The given optimization parameters
are the parameters used to set the GA algorithm. The parameters of the other
optimization algorithms are set according to equations (4.10), (4.11), (4.12), (4.15)
and (4.16).

4.2 Modeling the motion of a lung tumor
To illustrate the performances of the above method, a model approximating the
one-dimensional lung mobile tumor motion is built.
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Mobile tumors tracking is particularly challenging for the implementation of adap-
tive radiotherapy systems. The movement creates uncertainty about the position
of the tumor, which is compensated by margins that will radiate healthy tissues.
This effect is particularly important for particle therapy that is less robust to
planning errors. One solution to this problem is to guide the delivery of doses
by real-time X-ray imaging. In that case, X-ray images are acquired during the
treatment to track the tumor. These images feed into a model for predicting
the near future of tumor movement, which is necessary to compensate for the
delay between image acquisition and device activation, including the computa-
tional delay of the predictive algorithm. Unfortunately, radiographic images induce
undesirable irradiation. To limit patients’ exposure to harmful radiations, the
number of X-ray acquisitions has to be used in a parsimonious way. This par-
simonious use is described by the acronym ALARA: as low as reasonably achievable.

The model was inspired by research in lung tumor tracking [34], [35] and the
respiratory motion tracking system of the CyberKnife treatment device [36], [37].
The model developed does not pretend to have any medical value. It rather aims
at illustrating the performance of the added value of selecting measurement times
to improve the tracking of a system dynamics under the constraint of limited
measurements.

The tumor position to estimate zt is modeled as a shifted sinusoidal signal with
a time-varying amplitude at, a time-varying shift bt and a constant frequency ω.
Both at and bt are bounded random walks. Bounds ensure values remain realistic
over time. Besides, the constant oscillation frequency ω is picked uniformly at
random at the beginning of the process. Each measurement yt is a noisy version of
the position zt.

One defines the state Xt and its realization xt =
[
at bt ωt

]>
∈ R3.

Xt+1|Xt ∼

clip(N (at, σa), a, ā)
clip(N (bt, σb), b, b̄)

ωt

 , for t = 0, . . . , T − 1, (4.17)

Yt|Xt ∼ N (at sin(ωtt) + bt, σv) for t ∈M, (4.18)
Zt =At sin(Ωtt) +Bt for t = 0, . . . , T, (4.19)

X0 ∼U

 [a, ā]
[b, b̄]
[ω, ω̄]

 . (4.20)

The clipping function is defined as clip(x, x, x̄) := min(max(x, x), x̄). Equation
(4.20) indicates that the initial state is uniformly distributed at random on the
indicated domain.
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To make this model more realistic, the values of a, ā, b and b̄ are inspired from
[38] and the values of ω and ω̄ are inspired from [39]. All parameters are given in
Tab. 4.2.

The model is used as tracking model for the particle filter, training model for the
expected mean squared tracking error estimator and test model for the evaluation
of the performance indicators.
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Figure 4.2: Illustration of a realization of the lung tumor dynamics over 15 sec
or T = 60. The dynamic model used is given at equations (4.17) to 4.20). The
parameters used for the model are given in table 4.2. From top to bottom, the
figures represent the evolution of the tumor’s motion zt, the state variable amplitude
at and the state variable offset bt. The lower and upper bound of the amplitude
and the offset are depicted on the figures respectively by a blue and red horizontal
line.
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a = 8.8[mm] b = −5.8[mm] ω = 0.13[rad/ds]
ā = 24[mm] b̄ = 5.8[mm] ω̄ = 0.21[rad/ds]
σa = 1[mm] σb = 1[mm]

Table 4.2: Parameters used for the model (4.17)-(4.20). Values of a, ā, b and b̄ are
inspired by [38]. Values of ω and ω̄ are inspired from [39]. The time interval ds is
the duration between two measurements acquisitions. In the following the value
ds = 0.25s is used. This delay corresponds to the time required between an image
acquisition and the radiotherapy device activation, including the computational
delay of the predictive algorithm [37]

4.3 Results for the apriori comparison
The performances of the solutions of the apriori problem found by the GF, GB,
SA, GA and RT optimization algorithms are compared. The model, test, and
optimization parameters for the apriori comparison can be found in table 4.2.

The evolution of the cost ÊMSE with respect to the number of cost function
evaluations (one cost function evaluation corresponds to one evaluation of ÊMSE[M]
by an iterative optimization algorithm) is illustrated on figure 4.3.
One can observe that all five optimization algorithms return a measurement time
set with associated expected mean squared tracking error significantly lower than
the regularly spaced measurements. The final expected mean squared tracking
error of the solution returned by the SA, RT, GF and GB optimization algo-
rithms all lay close around 6. The solution returned by GA algorithm performs
notably better with a final minimum cost around 5.4. One can note that the
difference between GA average and minimum cost decreases over generations be-
fore reaching a quasi-convergence meaning that most of the individuals are identical.

The performance indicators given by table 4.3. One can note that the solution
returned by the GA algorithm performs better on the four indicators with a gain
on EMSE of 37.5% (±0.3%), an expected gain of 23.9% (±0.3%), a median gain of
34.2% (±0.3%) and a prob. of positive gain 76.8% (±0.3%). The confidence rate
about the margins is 95%.

The histogram of relative gain g(MGA) over the 100, 000 draws is shown in
figure 4.4. The histogram can be interpreted as an approximation of the probability
density of the random variable G(MGA). The prob. of positive gain for the GA
algorithm can be read as the fraction of the area of the histogram above 0. The
vertical lines corresponding to the null, expected and median gain are plotted. The
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histogram of the relative gain for the measurement time sets returned by the GF,
GB, SA and RT can be found in appendix B.2 respectively on figures B.1, B.2, B.3
and B.4.

Figure 4.5 compares the estimates ẑt(MREG) and ẑt(MGA) of the exact zt over
one particular realization. One can observe better filtering performances using the
measurement time setMGA. Quantitatively, the relative gain obtained usingMGA
instead ofMREG is g = 29.2%.
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Figure 4.3: Evolution of the minimum cost ÊMSE with respect to the number of cost
function evaluations for the different optimization algorithms (genetic algorithm
(GA), simulated annealing (SA), random trial (RT), greedy forward (GF), greedy
backward (GB)). It illustrates the quality of minimization for given computational
resources. The evolution of the average cost ÊMSE of the population of the GA
algorithm at each generation and the expected cost ÊMSE[MREG] of the regularly
spaced measurement time set are shown as well. One cost function evaluation
corresponds to one evaluation of ÊMSE[M] by the iterative optimization algorithm.
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GF GB SA GA RT
gain on EMSE (± 0.3% ) 34.6% 34.0% 33.6% 37.5% 30.1%
expected gain (± 0.3% ) 19.9% 21.1% 20.3% 23.9% 15.4%
median gain (± 0.3% ) 32.8% 32.1% 31.0% 34.2% 27.4%
prob. of positive gain (± 0.3% ) 73.7% 75.6% 74.7% 76.8% 71.2%

Table 4.3: Performance indicators for the measurement time sets returned by the
GF, GB, SA, GA and RT optimization algorithms. The indicators are the gain
on EMSE, the expected gain, the median gain and prob. of positive gain. Their
definition is given at subsection 4.1.1 and the method of estimation is explained at
subsection 4.1.2. The values of the model, test and optimization parameters can be
found in table 4.1. The margin error the performance indicators is the maximum
of the margin error of this indicator for the different optimization algorithms. The
confidence rate about the margins is 95%.
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Figure 4.4: Histogram of the relative gain G(MGA) obtained over 100, 000 draws.
The expected gain is 23.9%, the median gain is 34.2% and the prob. of positive gain
is 76.8%. The method of estimation is explained at subsection 4.1.2. The values of
the model, test and optimization parameters can be found in table 4.1.
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ẑt(MGA)
MREG
MGA

Figure 4.5: Comparison over a single draw of true value zt with the values ẑt(M)
filtered by the particle filter using the measurement time set MGA and MREG.
The relative gain on the complete sequence is g(MGA) = 29.2%. Results are
simulated from model (4.17)-(4.20). The values of the model, test and optimization
parameters can be found in table 4.1

4.4 Results for the online comparison
As the GA demonstrated better performances in subsection 4.3, the comparison
of the apriori and online implementations is limited to comparing the solution of
the apriori and online problem returned by the GA optimization algorithm. The
model, test and optimization parameters for the online comparison can be found
in table 4.2. As the online algorithm has to be run on each test, the number of
tests, as well as the computational cost, has been lowered compared to those used
for the apriori comparison.

The performance indicators given in table 4.4. One can note that the solution
of the online problem returned by the GA algorithm performs better on the four
indicators with a gain on EMSE of 39.8% (±4.1%), an expected gain of 29.8%
(±3.5%), a median gain of 43.2% (±3.7%) and a prob. of positive gain 83.0%
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(±3.5%). The confidence rate about the margins is 95%.

The histogram of relative gain g(MGA) over the 500 draws is shown in figure 4.6.
The histogram can be interpreted as an approximation of the probability density
of the random variable G(MGA). The prob. of positive gain of the measurement
time sets solving the online problem can be read as the fraction of the area of
the histogram above 0. The vertical lines corresponding to the null, expected and
median gain are plotted. The histogram of the relative gain of the measurement
time sets solving the apriori problem found by the GA algorithm can be found in
appendix B.2 on figure B.5.

It has to be noted that the solution of the online found by the GA achieves better
performances than any measurement time set tested in the apriori comparison in
subsection 4.3 with a computational cost for each online call of the GA algorithm
at least 55 times smaller (see the value of the optimization parameters on table
4.1).

GA apriori GA online
gain on EMSE 29.9% (± 4.4% ) 39.8% (± 4.1% )
expected gain 19.9% (± 4.2% ) 29.8% (± 3.5% )
median gain 33.9% (± 4.8% ) 43.2% (± 3.7% )
prob. of positive gain 74.3% (± 4.1% ) 83.0% (± 3.5% )

Table 4.4: Performance indicators for the solutions to the apriori and online
problem returned bu the GA algorithm. The indicators are the gain on EMSE, the
expected gain, the median gain and prob. of positive gain. Their definition is given
at subsection 4.1.1 and the method of estimation is explained at subsection 4.1.2.
The values of the model, test and optimization parameters can be found in table
4.1. The margin error the performance indicators is the maximum of the margin
error of this indicator for the different optimization algorithms. The confidence
rate about the margins is 95%.
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Figure 4.6: Histogram of the relative gain G(MGA(y)) obtained over 500 draws.
The expected gain is 29.8%, the median gain is 43.2% and the prob. of positive gain
is 83.0%. The method of estimation is explained at subsection 4.1.2. The values of
the model, test and optimization parameters can be found in table 4.1.



Chapter 5

Discussion

This chapter is organized into three sections. In section 5.1, the results obtained
in chapter 4 are analyzed. In section 5.2, several ways of using medical data
to tailor the models to tumor tracking are presented. Future work and possible
improvements of the algorithms are discussed in section 5.3.

5.1 Interpretation of the results
In section 4.3, the performances of the measurement time sets returned by five
different optimization algorithms to solve the apriori problem are compared to
regularly spaced measurement times under four indicators: the gain on ÊMSE, the
expected gain, the median gain, and the prob. of positive gain. Their definition is
given at subsection 4.1.1 and the method of estimation is explained at subsection
4.1.2. The values of the model, test, and optimization parameters can be found in
table 4.1.
The five algorithms returned measurement time sets that improved the tracking
performances over all these indicators. The genetic algorithm obtained the best
results: a gain on ÊMSE of 37.5%, an expected gain of 23.9%, a median gain of
34.2% and a prob. of positive gain of 76.8%.
These results demonstrate the added value of apriori selecting measurement times
to improve the tracking of a system dynamics under the constraint of limited
measurements.

As the genetic algorithm performed the best, its performance to solve the
online problem are studied in section 4.4. Over 500 tests, the performance of
the online computed measurement time set is compared to the regularly spaced
measurement time set, as well as to the apriori computed measurement time set.
Overall, the online computed measurement time sets performed better than the
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regularly spaced measurement time set with a gain on ÊMSE of 39.8%, an expected
gain of 29.8%, a median gain of 43.2%, and a prob. of positive gain of 83.0%. The
online computed measurement time sets improved largely the performances of the
apriori computed measurement time sets: a gain on ÊMSE improved by 9.9%, an
expected gain improved by 9.9%, a median gain improved by 9.3%, and a prob. of
positive gain improved by 5.7%.
It has to be noted that these results were achieved with a computational cost for
each online call of the GA algorithm at least 55 times smaller than in section 4.3.
These results emphasize the added value of selecting measurement times to improve
the tracking of a system dynamics under the constraint of limited measurements
and demonstrate the interest of performing this selection in an online manner.

5.2 Tailoring the method to tumor tracking us-
ing medical data

As mentioned in section 4.2, the model used to compute the results is an approxi-
mation of the real tumor dynamic.

If one had medical data of the tumor’s measurements and position, one could
make the estimator of the expected mean squared tracking error robust, by using
the empirical distribution function as training model as explained in section 3.7.
The idea is illustrated on figure 5.1.
More formally, if one has D pairs of empirical tumor’s measurements and positions,
{yit, zit}

i=0,...,D
t=0,...,T , one could compute the estimation of the expected mean squared

tracking error of a measurement time set, ÊMSE[M] directly on previously collected
medical data by drawing with replacement ndraws pairs {ykt , zkt }t=0,...,T among the
data. The testing model could also be replaced by the empirical distribution
function. More about statistical inference using data is to be found in appendix
A.2.
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M

((((((((hhhhhhhhtraining model
medical data

tracking model ÊMSE estimator

ÊMSE[M]

Figure 5.1: Estimation of the expected mean squared tracking error using medical
data as the training model.

Medical data could also be used to improve the tracking model used by the
particle filter. Indeed, one can use the collected data to calibrate the tracking
model’s parameters. The method to performed this calibration is explained in
appendix A.1 and [40].
Data driven model identification algorithms using machine learning algorithms
could also be investigated [41], [42].

In order to use the medical images as data, one would need to detect from
the images the tumor to be tracked. Over the last decade, deep neural networks
have demonstrated outstanding performance in performing the task of object
detection [43], [44]. This technology has been used with success to automate brain
tumor detection [45]. Recently, the “Kaggle data science bowl challenge” has been
submitted to the community to reward scientific work that uses deep learning for
lung cancer detection [46]. This approach is currently used for cancer diagnosis
and could be extended for the design of detection approach tailored for tracking.

5.3 Improving the algorithm and future work
Further work on the algorithm could focus on improving the speed of the iterative
optimization algorithms used to solve the online problem. The online algorithm
requires to solve N times the apriori problem over smaller and smaller time horizons.
Two considered options to increase the speed of the computation are:

• to reuse the measurement time set found at the previous step

• to change the stopping criterion such that the algorithm would stop once the
first measurement time of the set is computed (e.g. for the genetic algorithm,
one could decide to stop the computation once the population has converged
on the value of the first measurement time τ1).
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Other optimization algorithms such as reinforcement learning could be envisaged
to solve the apriori problem.

Another extension of the algorithm could be to generalize the measurement
time set to allow to acquire measurements from L different sources Y i, i = 1, . . . , L.
The measurement Y i would be accessible for t ∈Mi:

Y i
t |Xt ∼ pt(yit|xt)dyit for t ∈Mi, (5.1)

The constraint on the measurement size would become ∑L
i=1 |Mi| = N . In the case

of mobile tumor tracking with L = 2, a measurement source Y 1 could be an X-
ray image in the vertical plan and Y 2 could be an X-ray image in the horizontal plan.



Chapter 6

Conclusion

The problem of finding the optimal measurement time set for particle filtering over
a finite time horizon is presented and formalized as a combinatorial optimization
problem. A domain of application is the tracking of mobile tumors based on
X-ray images. Indeed, as the radiographic images induce undesirable radiation,
the number of X-ray acquisitions has to be used in a parsimonious way to limit
patients’ exposure to harmful radiations.
Finding the optimal measurement time set can be performed either apriori, before
any measurement acquisition, or online, as the measurements are acquired. These
problems are referred to respectively as the apriori problem and the online problem.

The main contribution of this work is to propose a method, nesting of a genetic
algorithm, a Monte Carlo algorithm and a particle filter, to find near-optimal
solution to these problems.
The performance of the algorithm to solve the apriori and online problem is
measured on a simplified lung tumor model. In comparison with measurements
performed at regular time intervals, the measurement time set solving the apriori
problem reduces the expected mean squared tracking error by 37.5%. The expected
tracking performance is improved by 39.8% using the measurement time set solving
the online problem and this with a significantly smaller computational budget.
Overall, the results demonstrate the added value of selecting measurement times
for particle filtering.

Several ways of using medical data to tailor the method to mobile tumor tracking
are presented. Medical data can, among others, be used to ensure the method
robustness and to calibrate the model parameters. Future work could focus on
increasing the speed of the optimization algorithm solving the online problem as
well as extending the problem to combine measurements from different sources.
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Appendix A

Theoretical annex

This chapter presents complementary theory about the methods and the algorithms
used in chapter 3 and 4. The theory presented is inspired by the excellent course
given by Jimmy Olsson at the KTH (Kungliga Tekniska högskolan) [26] and the
course reference book [27].

A.1 Calibrating the model’s parameters
Let ζ be the unknown parameters of the dynamic model. It can be calibrated by
finding parameters that maximize the normalized log-likelihood function:

ζ → lm(ζ, {yt}t=0,...,T ) = 1
T

lnL(ζ, {yt}t=0,...,T ), (A.1)

where the likelihood L(ζ, {yt}t=0,...,T ) = pζ({yt}t=0,...,T ) = ct(ζ) is the normalizing
constant of the smoothing distribution [47].

An exact expression of the normalizing constant is in most cases intractable. It
can, however, be approximated using a particle filter.

Let ωk(ζ) be the total weight of the particles at time k (c.f. section 2.4) for the
particle filter ran with the parameter ζ, the normalizing constant at time t, ct(ζ)
can be estimated as:

cSISR,N
t (ζ) = 1

N t+1

t∏
k=0

Ωk(ζ). (A.2)

One can prove that the estimator is unbiased: E[cSISR,N
t (ζ)] = ct(ζ).

To calibrate the model, one can then run the particle filter with different values
of the parameters ζ i, estimate the cSISR,N

t (ζ i) and select the parameter ζ i that leads
to the maximal normalized log-likelihood value.
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A.2 Statistical inference in data using Bootstrap
In statistics, bootstrap techniques are methods of statistical inference based on
multiple replication of data from the data set studied, according to resampling
techniques [40], [48].

The data y is viewed as a realization of some random variable Y with distribu-
tion P∗ belonging to some family P of probability distributions where P is some
general, possibly non-parametric family of distributions.

In this setting one wants to make inference about some property τ = τ(P∗) of
the distribution P∗ ∈ P that generated the data y.
The interest variable τ is estimated using some statistic on the data t(y). It has to
be noted that the estimate t(y) is a realization of the random variable t(Y ).

In the same way, the error ∆(y) = t(y) − τ is a realization of the random
variable ∆(Y ) = t(Y )− τ .

To assess the uncertainty of the estimator one needs to analyze the cumulative
distribution function F∆ of ∆(Y ). A confidence bound Iα = (L(y), U(y)) for τ on
level α should satisfy:

1− α = P∗
(
L(Y ) ≤ τ ≤ U(Y )

)
= P∗

(
t(Y )− L(Y ) ≥ t(Y )− τ ≥ t(Y )− U(Y )

)
= P∗

(
t(Y )− L(Y ) ≥ ∆(Y ) ≥ t(Y )− U(Y )

)
. (A.3)

Thus with:

t(y)− L(y) = F−1
∆ (1− α/2) (A.4)

t(y)− U(y) = F−1
∆ (α/2), (A.5)

and it comes that

Iα =
(
t(y)− F−1

∆ (1− α/2), t(y)− F−1
∆ (α/2)

)
. (A.6)

Consequently, the error cumulative distribution function F∆ is needed to make
qualitative statements about the estimator. However, F∆(z) is in general unknown.

The bootstrap algorithm deals with this problem by replacing P∗ with a data-
driven approximation and analyzing the variation of ∆(Y ) using a Monte Carlo
simulation from the empirical distribution P̂∗.

The empirical distribution function associated with the data y is defined by:
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Definition A.1 (empirical distribution). The empirical distribution P̂∗ gives equal
weight to each yi:

F̂n(z) = P̂∗(Z ≤ z)

= 1
n

n∑
i=1

1{yi≤z} = fraction of yi’s that are less than z. (A.7)

By the law of large numbers, it holds that F̂n(z) d−→ F (z) almost surely.

The bootstrap algorithm is the following:

1. Simulate B new data sets Y ∗b , b ∈ 1, 2, . . . , B, where each Y ∗b has the size
of y, from P̂∗. Each Y ∗b is obtained by drawing, with replacement, n times
among the yi’s.

2. Compute the values {t(Y ∗b )}b=1,...,B, of the estimator and the bootstrapped
errors ∆∗b = t(Y ∗b )− τ̂ for b = 1, . . . , B.

As the bootstrapped errors (∆∗b)Bb=1 are approximately distributed according to
F∆, one may use the approximation:

F−1
∆ (p) ≈ ∆∗(dBpe), p ∈ (0, 1), (A.8)

where (∆∗(1), . . . ,∆∗(B)) are the ordered errors.

Using this approximation in equation (A.6) gives the basic bootstrap confidence
bound:

Iα =
(
τ̂ −∆∗(dB(1−α/2)e), τ̂ −∆∗(dBα/2e)

)
. (A.9)
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Additional figures and table

B.1 Additional figures
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Figure B.1: Histogram of the relative gain G(MGF) obtained over 100, 000 draws.
The expected gain is 19.9%, the median gain is 32.8% and the prob. of positive gain
is 73.7%. The method of estimation is explained at subsection 4.1.2. The values of
the model, test and optimization parameters can be found in table 4.1.
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Figure B.2: Histogram of the relative gain G(MGB) obtained over 100, 000 draws.
The expected gain is 21.1%, the median gain is 32.1% and the prob. of positive gain
is 75.6%. The method of estimation is explained at subsection 4.1.2. The values of
the model, test and optimization parameters can be found in table 4.1.
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Figure B.3: Histogram of the relative gain G(MSA) obtained over 100, 000 draws.
The expected gain is 20.3%, the median gain is 31.0% and the prob. of positive gain
is 74.7%. The method of estimation is explained at subsection 4.1.2. The values of
the model, test and optimization parameters can be found in table 4.1.
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Figure B.4: Histogram of the relative gain G(MRT) obtained over 100, 000 draws.
The expected gain is 15.4%, the median gain is 27.4% and the prob. of positive gain
is 71.2%. The method of estimation is explained at subsection 4.1.2. The values of
the model, test and optimization parameters can be found in table 4.1.
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Figure B.5: Histogram of the relative gain G(MGA) obtained over 500 draws. The
expected gain is 19.9%, the median gain is 33.9% and the prob. of positive gain is
74.3%. The method of estimation is explained at subsection 4.1.2. The values of
the model, test and optimization parameters can be found in table 4.1.
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B.2 Additional table

parameters GF
n. calls GF 286
n. draws GF 8,741
n. part 200

parameters GB
n. calls GB 430
n. draws GB 5,841
n. part. 200

parameters SA

n. draws 1,000
n. part. 200
pop. size SA 50
max. iter. 25

parameters GA

n. draws 1,000
n. part. 200
pop. size GA 100
max. gen. 25

parameters RT

n. draws 1,000
n. part. 200
sample size 25

Table B.1: Table of the parameters value used to allow the different optimization
algorithms the same computational budget in the apriori comparison.
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Matlab code

A Matlab (MathWorks, Natick, Massachusetts, USA) implementation of all the
presented algorithms and the code that generate all figures are available on GitHub
at
github.com/AmauryGouverneur/Optimal_Measurement_Times_For_
Particle_Filtering.
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